$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A Highly Efficient CRISPR-Cas9-Mediated Large Genomic Deletion in Bacillus subtilis 원문보기

Frontiers in microbiology, v.8, 2017년, pp.1167 -   

So, Younju (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon, South Korea) ,  Park, Soo-Young (Genofocus Inc. Daejeon, South Korea) ,  Park, Eun-Hye (Genofocus Inc. Daejeon, South Korea) ,  Park, Seung-Hwan (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon, South Korea) ,  Kim, Eui-Joong (Genofocus Inc. Daejeon, South Korea) ,  Pan, Jae-Gu (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon, South Korea) ,  Choi, Soo-Keun (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

In Bacillus subtilis, large genomic deletions have been carried out for genome reduction, antibiotic overproduction, and heterologous protein overexpression. In view of the eco-friendliness of B. subtilis, it is critical that engineering preserves its food-grade status and avoids leaving foreign DNA...

주제어

참고문헌 (34)

  1. Ara K. Ozaki K. Nakamura K. Yamane K. Sekiguchi J. Ogasawara N. ( 2007 ). Bacillus minimum genome factory: effective utilization of microbial genome information . Biotechnol. Appl. Biochem. 46 169 – 178 . 10.1042/BA20060111 17115975 

  2. Ayora S. Carrasco B. Cardenas P. P. Cesar C. E. Canas C. Yadav T. ( 2011 ). Double-strand break repair in bacteria: a view from Bacillus subtilis . FEMS Microbiol. Rev. 35 1055 – 1081 . 10.1111/j.1574-6976.2011.00272.x 21517913 

  3. Brouns S. J. Jore M. M. Lundgren M. Westra E. R. Slijkhuis R. J. Snijders A. P. ( 2008 ). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 960 – 964 . 10.1126/science.1159689 18703739 

  4. Cutting S. M. Harwood C. R. ( 1990 ). Molecular Biological Methods for Bacillus. Chichester : Wiley . 

  5. Deltcheva E. Chylinski K. Sharma C. M. Gonzales K. Chao Y. Pirzada Z. A. ( 2011 ). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 602 – 607 . 10.1038/nature09886 21455174 

  6. Dong H. Zhang D. ( 2014 ). Current development in genetic engineering strategies of Bacillus species. Microb. Cell Fact. 13 : 63 10.1186/1475-2859-13-63 

  7. Dunn A. K. Handelsman J. ( 1999 ). A vector for promoter trapping in Bacillus cereus . Gene 226 297 – 305 . 10.1016/S0378-1119(98)00544-7 9931504 

  8. Garneau J. E. Dupuis M. E. Villion M. Romero D. A. Barrangou R. Boyaval P. ( 2010 ). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 67 – 71 . 10.1038/nature09523 21048762 

  9. Hamon M. A. Lazazzera B. A. ( 2001 ). The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis . Mol. Microbiol. 42 1199 – 1209 . 10.1046/j.1365-2958.2001.02709.x 11886552 

  10. Huang H. Zheng G. Jiang W. Hu H. Lu Y. ( 2015 ). One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces . Acta Biochim. Biophys. Sin. 47 231 – 243 . 10.1093/abbs/gmv007 25739462 

  11. Jeong D. E. Park S. H. Pan J. G. Kim E. J. Choi S. K. ( 2015 ). Genome engineering using a synthetic gene circuit in Bacillus subtilis . Nucleic Acids Res. 43 : e42 10.1093/nar/gku1380 

  12. Jiang W. Bikard D. Cox D. Zhang F. Marraffini L. A. ( 2013 ). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31 233 – 239 . 10.1038/nbt.2508 23360965 

  13. Jiang Y. Chen B. Duan C. Sun B. Yang J. Yang S. ( 2015 ). Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81 2506 – 2514 . 10.1128/AEM.04023-14 25636838 

  14. Keggins K. M. Lovett P. S. Duvall E. J. ( 1978 ). Molecular cloning of genetically active fragments of Bacillus DNA in Bacillus subtilis and properties of the vector plasmid pUB110. Proc. Natl. Acad. Sci. U.S.A. 75 1423 – 1427 . 10.1073/pnas.75.3.1423 418411 

  15. Khasanov F. K. Zvingila D. J. Zainullin A. A. Prozorov A. A. Bashkirov V. I. ( 1992 ). Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology. Mol. Gen. Genet. 234 494 – 497 . 10.1007/BF00538711 1406596 

  16. Kim S. Kim D. Cho S. W. Kim J. Kim J. S. ( 2014 ). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24 1012 – 1019 . 10.1101/gr.171322.113 24696461 

  17. Kim S. Y. Park S. Y. Choi S. K. Park S. H. ( 2015 ). Biosynthesis of polymyxins B, E, and P using genetically engineered polymyxin synthetases in the surrogate host Bacillus subtilis . J. Microbiol. Biotechnol. 25 1015 – 1025 . 10.4014/jmb.1505.05036 26059516 

  18. Kumpfmuller J. Methling K. Fang L. Pfeifer B. A. Lalk M. Schweder T. ( 2016 ). Production of the polyketide 6-deoxyerythronolide B in the heterologous host Bacillus subtilis . Appl. Microbiol. Biotechnol. 100 1209 – 1220 . 10.1007/s00253-015-6990-6 26432460 

  19. Liu S. Endo K. Ara K. Ozaki K. Ogasawara N. ( 2008 ). Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter. Microbiology 154 2562 – 2570 . 10.1099/mic.0.2008/016881-0 18757790 

  20. Morimoto T. Ara K. Ozaki K. Ogasawara N. ( 2009 ). A new simple method to introduce marker-free deletions in the Bacillus subtilis genome. Genes Genet. Syst. 84 315 – 318 . 10.1266/ggs.84.315 20057169 

  21. Morimoto T. Kadoya R. Endo K. Tohata M. Sawada K. Liu S. ( 2008 ). Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis . DNA Res. 15 73 – 81 . 10.1093/dnares/dsn002 18334513 

  22. Mougiakos I. Bosma E. F. De Vos W. M. Van Kranenburg R. Van Der Oost J. ( 2016 ). Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol. 34 575 – 587 . 10.1016/j.tibtech.2016.02.004 26944793 

  23. Oh J. H. van Pijkeren J. P. ( 2014 ). CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri . Nucleic Acids Res. 42 e131. 10.1093/nar/gku623 

  24. Ran F. A. Hsu P. D. Wright J. Agarwala V. Scott D. A. Zhang F. ( 2013 ). Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8 2281 – 2308 . 10.1038/nprot.2013.143 24157548 

  25. Sapranauskas R. Gasiunas G. Fremaux C. Barrangou R. Horvath P. Siksnys V. ( 2011 ). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli . Nucleic Acids Res. 39 9275 – 9282 . 10.1093/nar/gkr606 21813460 

  26. Stragier P. Bonamy C. Karmazyn-Campelli C. ( 1988 ). Processing of a sporulation sigma factor in Bacillus subtilis : how morphological structure could control gene expression. Cell 52 697 – 704 . 10.1016/0092-8674(88)90407-2 3125985 

  27. Thwaite J. E. Baillie L. W. Carter N. M. Stephenson K. Rees M. Harwood C. R. ( 2002 ). Optimization of the cell wall microenvironment allows increased production of recombinant Bacillus anthracis protective antigen from B. subtilis . Appl. Environ. Microbiol. 68 227 – 234 . 10.1128/AEM.68.1.227-234.2002 11772631 

  28. van der Oost J. Westra E. R. Jackson R. N. Wiedenheft B. ( 2014 ). Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12 479 – 492 . 10.1038/nrmicro3279 24909109 

  29. Westbrook A. W. Moo-Young M. Chou C. P. ( 2016 ). Development of a CRISPR-Cas9 toolkit for comprehensive engineering of Bacillus subtilis . Appl. Environ. Microbiol. 82 4876 – 4895 . 10.1128/AEM.01159-16 27260361 

  30. Westers H. Dorenbos R. Van Dijl J. M. Kabel J. Flanagan T. Devine K. M. ( 2003 ). Genome engineering reveals large dispensable regions in Bacillus subtilis . Mol. Biol. Evol. 20 2076 – 2090 . 10.1093/molbev/msg219 12949151 

  31. Yamashiro D. Minouchi Y. Ashiuchi M. ( 2011 ). Moonlighting role of a poly-gamma-glutamate synthetase component from Bacillus subtilis : insight into novel extrachromosomal DNA maintenance. Appl. Environ. Microbiol. 77 2796 – 2798 . 10.1128/AEM.02649-10 21357437 

  32. Zhang K. Duan X. Wu J. ( 2016 ). Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci. Rep. 6 : 27943 10.1038/srep27943 

  33. Zhang X. Z. Yan X. Cui Z. L. Hong Q. Li S. P. ( 2006 ). mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis . Nucleic Acids Res. 34 : e71 10.1093/nar/gkl358 

  34. Zobel S. Kumpfmuller J. Sussmuth R. D. Schweder T. ( 2015 ). Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl. Microbiol. Biotechnol. 99 681 – 691 . 10.1007/s00253-014-6199-0 25398283 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로