$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Transcriptional Regulation of Cellulose Biosynthesis during the Early Phase of Nitrogen Deprivation in Nannochloropsis salina 원문보기

Scientific reports, v.7, 2017년, pp.5264 -   

Jeong, Seok Won (Department of Biological Sciences, Chungnam National University, Daejeon, 34134 Korea) ,  Nam, Seung Won (Bioresources Culture Collection Division, Nakdonggang National Institute of Biological Resources, Sangju, 37242 Korea) ,  HwangBo, Kwon (Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Korea) ,  Jeong, Won Joong (Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Korea) ,  Jeong, Byeong-ryool (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Korea) ,  Chang, Yong Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Korea) ,  Park, Youn-Il (Department of Biological Sciences, Chungnam National University, Daejeon, 34134 Korea)

Abstract AI-Helper 아이콘AI-Helper

Microalgal photosynthesis provides energy and carbon-containing precursors for the biosynthesis of storage carbohydrates such as starch, chrysolaminarin, lipids, and cell wall components. Under mild nitrogen deficiency (N−), some Nannochloropsis species accumulate lipid by augmenting cytosoli...

참고문헌 (58)

  1. 1. Ma Y Wang Z Yu C Yin Y Zhou G Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production Bioresour. Technol. 2014 167 503 509 10.1016/j.biortech.2014.06.047 25013933 

  2. 2. Wen ZY Chen F Heterotrophic production of eicosapentaenoic acid by microalgae Biotechnol. Adv. 2003 21 273 294 10.1016/S0734-9750(03)00051-X 14499126 

  3. 3. Rodolfi L Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor Biotechnol. Bioeng. 2009 102 100 112 10.1002/bit.22033 18683258 

  4. 4. Radakovits R Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana Nat. Commun. 2012 3 686 10.1038/ncomms1688 22353717 

  5. 5. Vieler A Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779 PLoS Genetics. 2012 8 e1003064 10.1371/journal.pgen.1003064 23166516 

  6. 6. Wang Q Genome editing of model microalgae Nannochloropsis spp. by CRISPR/Cas9 Plant J. 2016 88 1071 1081 10.1111/tpj.13307 27538728 

  7. 7. Schwede S Rehman ZU Gerber M Theiss C Span R Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass Bioresour. Technol. 2013 143 505 511 10.1016/j.biortech.2013.06.043 23831893 

  8. 8. Scholz MJ Ultrastructure and composition of the Nannochloropsis gaditana cell wall Eukaryot. Cell. 2014 13 1450 1464 10.1128/EC.00183-14 25239976 

  9. 9. Beacham TA Bradley C White DA Bond P Ali ST Lipid productivity and cell wall ultrastructure of six strains of Nannochloropsis : Implications for biofuel production and downstream processing Algal Res. 2014 6 64 69 10.1016/j.algal.2014.09.003 

  10. 10. Van Donk E Lurling M Hessen DO Lokhorst GM Altered cell wall morphology in nutrient deficient phytoplankton and its impact on grazers Limnol. Oceanography. 1997 42 357 364 10.4319/lo.1997.42.2.0357 

  11. 11. Yap BJJ Crawford SA Dagastine RR Scales PJ Martin GJO Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption J. Ind. Microbiol. Biotechnol. 2016 43 1671 1680 10.1007/s10295-016-1848-1 27778140 

  12. 12. Brown MR The amino-acid and sugar composition of 16 species of microalgae used in mariculture J. Exp. Mar. Biol. Ecol. 1991 145 79 99 10.1016/0022-0981(91)90007-J 

  13. 13. Gelin F Resistant biomacromolecules in marine microalgae of the classes eustigmatophyceae and chlorophyceae: geochemical implications Org. Geochem. 1997 26 659 675 10.1016/S0146-6380(97)00035-1 

  14. 14. Converti A Casazza AA Ortiz EY Perego. P Borghi MD Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production Chem. Eng. Process.: Process Intensification 2009 48 1146 1151 10.1016/j.cep.2009.03.006 

  15. 15. Yeesang C Cheirsilp B Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand Bioresource Technol. 2011 102 3034 3040 10.1016/j.biortech.2010.10.013 

  16. 16. Simionato D The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus Eukaryot. Cell. 2013 12 665 676 10.1128/EC.00363-12 23457191 

  17. 17. Solovchenko A Interactive effects of salinity, high light, and nitrogen starvation on fatty acid and carotenoid profiles in Nannochloropsis oceanica CCALA 804 Eur. J. Lipid Sci. Technol. 2014 116 635 644 10.1002/ejlt.201300456 

  18. 18. Cooksey KE Guckert JB Williams SA Gallis PR Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red J. Microbiol. Methods 1987 6 333 345 10.1016/0167-7012(87)90019-4 

  19. 19. Gusbeth CA Eing C Göttel M Sträßner R Frey W Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation Int. J. Renew Energy Biofuels. 2016 1 12 

  20. 20. Dong HP Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery Plant Physiol. 2013 162 1110 1126 10.1104/pp.113.214320 23637339 

  21. 21. Li X A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii Plant Cell 2012 24 4670 4686 10.1105/tpc.112.105106 23161887 

  22. 22. Corteggiani Carpinelli E Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion Mol. Plant 2014 7 323 335 10.1093/mp/sst120 23966634 

  23. 23. Li F Gao D Hu H High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product Biosci. Biotechnol. Biochem. 2014 78 812 817 10.1080/09168451.2014.905184 25035984 

  24. 24. Petroutsos D Evolution of galactoglycerolipid biosynthetic pathways: from cyanobacteria to primary plastids and from primary to secondary plastids Prog. Lipid Res. 2014 54 68 85 10.1016/j.plipres.2014.02.001 24594266 

  25. 25. Jia J Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions Algal Res. 2015 7 66 77 10.1016/j.algal.2014.11.005 

  26. 26. Wang D Na nnochloropsis genomes reveal evolution of microalgal oleaginous traits PLoS Genet. 2014 10 e1004094 10.1371/journal.pgen.1004094 24415958 

  27. 27. Domergue F Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast J. Biol. Chem. 2003 278 35115 35126 10.1074/jbc.M305990200 12835316 

  28. 28. Domergue F New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Δ12-fatty acid desaturases Plant Physiol. 2003 131 1648 1660 10.1104/pp.102.018317 12692324 

  29. 29. Michaelson LV Lazarus CM Griffiths G Napier JA Stobart AK Isolation of a ∆5-fatty acid desaturase gene from Mortierella alpina J. Biol. Chem. 1998 273 19055 19059 10.1074/jbc.273.30.19055 9668087 

  30. 30. Peng KT Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine didatom Phaeodactylum tricornutum J. Agric. Food Chem. 2014 62 8773 8776 10.1021/jf5031086 25109502 

  31. 31. Hu Q Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances Plant J. 2008 54 621 639 10.1111/j.1365-313X.2008.03492.x 18476868 

  32. 32. Turchetto-Zolet A Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis BMC Evol. Bio. 2011 11 263 10.1186/1471-2148-11-263 21933415 

  33. 33. Wang D Nannochloropsis genomes reveal evolution of microalgal oleaginous traits PloS Genet. 2014 10 e1004094 10.1371/journal.pgen.1004094 24415958 

  34. 34. Herth W Schnepf E The fluorochrome, calcofluor white, binds oriented to structural polysaccharide fibrils Protoplasma 1980 105 129 133 10.1007/BF01279855 

  35. 35. Günerken E Cell disruption for microalgae biorefineries Biotechnol. Adv. 2015 33 243 260 10.1016/j.biotechadv.2015.01.008 25656098 

  36. 36. Carpita NC Tensile strength of cell walls of living cells Plant Physiol. 1985 79 485 488 10.1104/pp.79.2.485 16664436 

  37. 37. Lee AK Lewis DM Ashman PJ Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements Biomass Bioener. 2012 46 89 101 10.1016/j.biombioe.2012.06.034 

  38. 38. Zetsche EM Meysman FJR Dead or alive? Viability assessment of micro- and mesoplankton J. Plankton Res. 2012 34 493 509 10.1093/plankt/fbs018 

  39. 39. Hamann T Global expression analysis of CES and CSL genes in Arabidopsis Cellulose 2004 11 279 286 10.1023/B:CELL.0000046340.99925.57 

  40. 40. Xie L Yang C Wang X Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CES genes in Arabidopsis J. Exp. Bot. 2011 62 4495 4506 10.1093/jxb/err164 21617247 

  41. 41. Li X Two stages of N-deficient cultivation enhance the lipid content of microalga Scenedesmus sp J. Am. Oil Chem. Soc. 2015 92 503 512 10.1007/s11746-015-2613-8 

  42. 42. Petrie JR Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway PLoS One 2012 7 e35214 10.1371/journal.pone.0035214 22523576 

  43. 43. Meng Y The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes Bioresour. Technol. 2015 179 483 489 10.1016/j.biortech.2014.12.012 25575208 

  44. 44. Slocombe SP Unlocking nature’s treasure-chest: screening for oleaginous algae Sci. Rep. 2015 5 9844 10.1038/srep09844 26202369 

  45. 45. Sukenik A Carmeli Y Berner T Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp J. Phycol. 1989 25 686 692 10.1111/j.0022-3646.1989.00686.x 

  46. 46. Alboresi A Light remodels lipid biosynthesis in Nannochloropsis gaditana by modulating carbon partitioning between organelles Plant Physiol. 2016 171 2468 2482 27325666 

  47. 47. Pal D Khozin-Goldberg I Cohen Z Boussiba S The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp Appl. Microbiol. Biotechnol. 2011 90 1429 1441 10.1007/s00253-011-3170-1 21431397 

  48. 48. Sforza E Simionato D Giacometti GM Bertucco A Morosinotto T Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors PLoS One. 2012 7 e38975 10.1371/journal.pone.0038975 22745696 

  49. 49. Teo CL Idris A Zain NAM Taisir M Synergistic effect of optimizing light-emitting diode illumination quality and intensity to manipulate composition of fatty acid methyl esters from Nannochloropsis sp Bioresour. Technol. 2014 173 284 290 10.1016/j.biortech.2014.09.110 25310864 

  50. 50. Kang NK Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina Biotech. Biofuels 2015 8 200 10.1186/s13068-015-0386-9 

  51. 51. Park JY Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris Renewable Energy 2015 79 3 8 10.1016/j.renene.2014.10.001 

  52. 52. Guillard RR Ryther JH Studies of marine planktonic diatoms. I. Cyclotella nana (Hustedt), and Detonula confervacea (cleve) Gran Can. J. Microbiol. 1962 8 229 239 10.1139/m62-029 13902807 

  53. 53. Moran R Porath D Chlorophyll determination in intact tissues using N, N-dimethylformamide Plant Physiol. 1980 65 478 479 10.1104/pp.65.3.478 16661217 

  54. 54. Porra R Thompson W Kriedemann P Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy Biochim. Biophys. Acta. 1989 975 384 394 10.1016/S0005-2728(89)80347-0 

  55. 55. Reynolds ES The use of lead citrate at high pH as an electron-opaque stain in electron microscopy J. Cell Biol. 1963 17 208 212 10.1083/jcb.17.1.208 13986422 

  56. 56. Hurst PL Sullivan PA Shepherd MG Substrate specificity and mode of action of a cellulase from Aspergillus niger. Biochem. J. 1978 169 389 395 629761 

  57. 57. Sasser M Identification of bacteria by gas chromatography of cellular fatty acids USFCC Newsletter 1990 20 1 6 

  58. 58. Lu Y Xie L Chen J A novel procedure for absolute real-time quantification of gene expression patterns Plant Methods 2012 8 9 10.1186/1746-4811-8-9 22404915 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로