$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Mechanisms contributing to cardiac remodelling

Clinical science, v.131 no.18, 2017년, pp.2319 - 2345  

Wu, Qing-Qing (Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China) ,  Xiao, Yang (Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China) ,  Yuan, Yuan (Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China) ,  Ma, Zhen-Guo (Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China) ,  Liao, Hai-Han (Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China) ,  Liu, Chen (Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China) ,  Zhu, Jin-Xiu (Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China) ,  Yang, Zheng (Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China) ,  Deng, Wei (Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China) ,  Tang, Qi-zhu (Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China)

Abstract AI-Helper 아이콘AI-Helper

Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of th...

주제어

참고문헌 (266)

  1. Eur. Heart J. Nichols 35 2950 2014 10.1093/eurheartj/ehu299 Cardiovascular disease in Europe 2014: epidemiological update 

  2. F1000 Research Kapiloff 2016 10.12688/f1000research.7278.1 The cardiac enigma: current conundrums in heart failure research 

  3. J. Am. Coll. Cardiol. Cohn 35 569 2000 10.1016/S0735-1097(99)00630-0 Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling 

  4. J. Am. Coll. Cardiol. Oparil 5 6 Suppl. 57B 1985 10.1016/S0735-1097(85)80528-3 Pathogenesis of ventricular hypertrophy 

  5. Circ. Res. Grove 25 473 1969 10.1161/01.RES.25.4.473 Biochemical correlates of cardiac hypertrophy. IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat 

  6. Circ. Res. Ford 39 297 1976 10.1161/01.RES.39.3.297 Heart size 

  7. Circulation Pfeffer 81 1161 1990 10.1161/01.CIR.81.4.1161 Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications 

  8. J. Clin. Invest. Grossman 56 56 1975 10.1172/JCI108079 Wall stress and patterns of hypertrophy in the human left ventricle 

  9. Am. J. Cardiol. Seals 61 224 1988 10.1016/0002-9149(88)90920-4 Relation of left ventricular dilation during acute myocardial infarction to systolic performance, diastolic dysfunction, infarct size and location 

  10. N. Engl. J. Med. White 317 850 1987 10.1056/NEJM198710013171402 Effect of intravenous streptokinase on left ventricular function and early survival after acute myocardial infarction 

  11. J. Am. Coll. Cardiol. Stone 11 453 1988 10.1016/0735-1097(88)91517-3 Prognostic significance of location and type of myocardial infarction: independent adverse outcome associated with anterior location 

  12. Circulation Jugdutt 78 906 1988 10.1161/01.CIR.78.4.906 Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion, and complications. Effect of timing, dosage, and infarct location 

  13. Cardiology Jugdutt 79 Suppl. 2 2 1991 10.1159/000174916 Nitrates for myocardial salvage in the 1990s 

  14. Hypertension Fernandes 58 182 2011 10.1161/HYPERTENSIONAHA.110.168252 Aerobic exercise training-induced left ventricular hypertrophy involves regulatory microRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7) 

  15. Braz. J. Med. Biol. Res. Fernandes 44 836 2011 10.1590/S0100-879X2011007500112 Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants 

  16. Circulation Haskell 116 1081 2007 10.1161/CIRCULATIONAHA.107.185649 Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association 

  17. J. Am. Coll. Cardiol. Haykowsky 49 2329 2007 10.1016/j.jacc.2007.02.055 A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed 

  18. N. Engl. J. Med. Hill 358 1370 2008 10.1056/NEJMra072139 Cardiac plasticity 

  19. Cardiol. Clin. Bernardo 34 515 2016 10.1016/j.ccl.2016.06.002 Molecular aspects of exercise-induced cardiac remodeling 

  20. Front. Physiol. Spaich 6 202 2015 10.3389/fphys.2015.00202 Ongoing controversies surrounding cardiac remodeling: is it black and white-or rather fifty shades of gray? 

  21. Int. J. Cardiol. Redondo-Angulo 202 819 2016 10.1016/j.ijcard.2015.10.005 Planavila C/EBPβ is required in pregnancy-induced cardiac hypertrophy 

  22. Circ. Res. Eghbali 96 1208 2005 10.1161/01.RES.0000170652.71414.16 Molecular and functional signature of heart hypertrophy during pregnancy 

  23. Am. J. Physiol. Heart Circ. Physiol. Xu 311 H807 2016 10.1152/ajpheart.00056.2016 Pregnancy mitigates cardiac pathology in a mouse model of left ventricular pressure overload 

  24. Cardiol. Clin. Beaudry 34 507 2016 10.1016/j.ccl.2016.06.001 A modern definition of the Athlete's heart-for research and the clinic 

  25. Eur. J. Cardiovasc. Prev. Rehabil. Grimsmo 17 100 2010 10.1097/HJR.0b013e32833226be High prevalence of atrial fibrillation in long-term endurance cross-country skiers: echocardiographic findings and possible predictors-a 28-30 years follow-up study 

  26. Eur. Heart J. Andersen 34 3624 2013 10.1093/eurheartj/eht188 Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study 

  27. Circulation Benito 123 13 2011 10.1161/CIRCULATIONAHA.110.938282 Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training 

  28. Nat. Commun. Aschar-Sobbi 6 6018 2015 10.1038/ncomms7018 Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα 

  29. Am. J. Physiol. Heart Circ. Physiol. Fernandes 309 H543 2015 10.1152/ajpheart.00899.2014 Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs 

  30. Arch. Toxicol. Tham 89 1401 2015 10.1007/s00204-015-1477-x Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets 

  31. Circulation Kehat 122 2727 2010 10.1161/CIRCULATIONAHA.110.942268 Molecular pathways underlying cardiac remodeling during pathophysiological stimulation 

  32. J. Mol. Cell Cardiol. Shimizu 97 245 2016 10.1016/j.yjmcc.2016.06.001 Physiological and pathological cardiac hypertrophy 

  33. Pflugers Arch. Janicki 465 687 2013 10.1007/s00424-013-1229-9 Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase 

  34. J. Card. Fail. Gardner 8 101 2002 10.1054/jcaf.2002.32195 Gender differences in cardiac remodeling secondary to chronic volume overload 

  35. Am. J. Physiol. Regul. Integr. Comp. Physiol. Fliegner 298 R1597 2010 10.1152/ajpregu.00825.2009 Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload 

  36. J. Am. Heart Assoc. Iorga 5 e002482 2016 10.1161/JAHA.115.002482 Rescue of pressure overload-induced heart failure by estrogen therapy 

  37. J. Cardiovasc. Pharmacol. Goldstein 24 Suppl. 3 S27 1994 Ventricular remodeling and angiotensin-converting enzyme inhibitors 

  38. N. Engl. J. Med. Pfeffer 319 80 1988 10.1056/NEJM198807143190204 Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction 

  39. Circulation Pfeffer 72 406 1985 10.1161/01.CIR.72.2.406 Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril 

  40. N. Engl. J. Med. SOLVD Investigators 327 685 1992 10.1056/NEJM199209033271003 Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators 

  41. N. Eng. J. Med. Pfeffer 327 669 1992 10.1056/NEJM199209033271001 Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the Survival and Ventricular Enlargement Trial. The SAVE Investigators 

  42. Lancet 342 821 1993 Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators 

  43. Circulation ISIS-4 Collaborative Group 88 1 1993 Randomized study of oral captopril in over 50,000 patients with suspected acute myocardial infarction 

  44. Lancet 343 1115 1994 GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Gruppo Italiano per lo Studio della Sopravvivenza nell’infarto Miocardico 

  45. Am. J. Physiol. Sabbah 260 H1379 1991 A canine model of chronic heart failure produced by multiple sequential coronary microembolizations 

  46. Circulation Suzuki 106 2967 2002 10.1161/01.CIR.0000039104.56479.42 Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure 

  47. Circulation Pitt 108 1831 2003 10.1161/01.CIR.0000091405.00772.6E Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study 

  48. Circulation Zannad 102 2700 2000 10.1161/01.CIR.102.22.2700 Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES) 

  49. Curr. Med. Chem. Cardiovasc. Hematol. Agents Fraccarollo 2 287 2004 10.2174/1568016043356219 Mineralocorticoid receptor antagonism and cardiac remodeling in ischemic heart failure 

  50. JACC Heart Fail. Cole 2 545 2014 10.1016/j.jchf.2014.04.012 “Triple therapy” of heart failure with angiotensin-converting enzyme inhibitor, beta-blocker, and aldosterone antagonist may triple survival time: shouldn’t we tell patients 

  51. Circulation Mann 85 790 1992 10.1161/01.CIR.85.2.790 Adrenergic effects on the biology of the adult mammalian cardiocyte 

  52. J. Am. Coll. Cardiol. Doughty 23 814 1994 10.1016/0735-1097(94)90773-0 Beta-blockers in heart failure: promising or proved? 

  53. Cardiology Svanegaard 83 21 1993 10.1159/000175943 Neurohormonal systems during progression of heart failure: a review 

  54. Lancet 353 2001 1999 10.1016/S0140-6736(99)04440-2 Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF) 

  55. N. Engl. J. Med. Beta-Blocker Evaluation of Survival Trial Investigators 344 1659 2001 10.1056/NEJM200105313442202 A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure 

  56. Circulation McKelvie 100 1056 1999 10.1161/01.CIR.100.10.1056 Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators 

  57. Circulation 101 378 2000 10.1161/01.CIR.101.4.378 Effects of metoprolol CR in patients with ischemic and dilated cardiomyopathy: the randomized evaluation of strategies for left ventricular dysfunction pilot study 

  58. J. Physiol. Ringer 4 29 1883 10.1113/jphysiol.1883.sp000120 A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart 

  59. Circ. Res. Gwathmey 61 70 1987 10.1161/01.RES.61.1.70 Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure 

  60. J. Mol. Cell Cardiol. Schmidt 30 1929 1998 10.1006/jmcc.1998.0748 Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure 

  61. Heart Fail. Rev. Lehnart 14 213 2009 10.1007/s10741-009-9146-x Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart 

  62. Circ. Res. Ozdemir 102 1398 2008 10.1161/CIRCRESAHA.108.173922 Pharmacological inhibition of na/ca exchange results in increased cellular Ca2+ load attributable to the predominance of forward mode block 

  63. Circulation Yano 107 477 2003 10.1161/01.CIR.0000044917.74408.BE FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure 

  64. Proc. Natl. Acad. Sci. U.S.A. Wehrens 102 9607 2005 10.1073/pnas.0500353102 Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure 

  65. Heart Lyon 94 89 2008 10.1136/hrt.2007.116483 Gene therapy: targeting the myocardium 

  66. Clin. Ther. Macdonald 37 2199 2015 10.1016/j.clinthera.2015.08.013 Combined angiotensin receptor/neprilysin inhibitors: a review of the new paradigm in the management of chronic heart failure 

  67. N. Engl. J. Med. McMurray 371 993 2014 10.1056/NEJMoa1409077 Angiotensin-neprilysin inhibition versus enalapril in heart failure 

  68. Circulation Packer 131 54 2015 10.1161/CIRCULATIONAHA.114.013748 Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure 

  69. Cell. Mol. Life Sci. Haque 74 983 2016 10.1007/s00018-016-2373-0 How cardiomyocytes sense pathophysiological stresses for cardiac remodeling 

  70. Am. J. Physiol. Heart Circ. Physiol. Tsutsui 301 H2181 2011 10.1152/ajpheart.00554.2011 Oxidative stress and heart failure 

  71. Heart Fail. Rev. Akhmedov 20 227 2015 10.1007/s10741-014-9457-4 Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart 

  72. Cardiovasc. Hematol. Disord. Drug Targets Purnomo 13 165 2013 10.2174/1871529X11313020010 Oxidative stress and transforming growth factor-beta1-induced cardiac fibrosis 

  73. J. Cell. Physiol. Somanna 231 1130 2016 10.1002/jcp.25210 The Nox1/4 dual inhibitor GKT137831 or Nox4 knockdown inhibits angiotensin-II-induced adult mouse cardiac fibroblast proliferation and migration. AT1 physically associates with Nox4 

  74. Biomaterials Somasuntharam 34 7790 2013 10.1016/j.biomaterials.2013.06.051 Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction 

  75. J. Mol. Cell Cardiol. Sirker 98 11 2016 10.1016/j.yjmcc.2016.07.003 Cell-specific effects of Nox2 on the acute and chronic response to myocardial infarction 

  76. Front. Biosci. (Landmark Ed.) Anilkumar 14 3168 2009 10.2741/3443 Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure 

  77. Arch. Biochem. Biophys. Jacob-Ferreira 540 82 2013 10.1016/j.abb.2013.09.019 Activation of intracellular matrix metalloproteinase-2 by reactive oxygen-nitrogen species: consequences and therapeutic strategies in the heart 

  78. J. Mol. Cell Cardiol. Kohler 73 92 2014 10.1016/j.yjmcc.2014.03.001 Reactive oxygen species and excitation-contraction coupling in the context of cardiac pathology 

  79. Circulation Doehner 105 2619 2002 10.1161/01.CIR.0000017502.58595.ED Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies 

  80. Am. J. Clin. Nutr. Keith 73 219 2001 10.1093/ajcn/73.2.219 A controlled clinical trial of vitamin E supplementation in patients with congestive heart failure 

  81. Br. J. Pharmacol. Wang 2017 10.1111/bph.13888 Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets 

  82. Front. Cardiovasc. Med. Zhang 4 29 2017 10.3389/fcvm.2017.00029 Role of endoplasmic reticulum stress, autophagy, and inflammation in cardiovascular disease 

  83. Free Radic. Biol. Med. Sozen 78 30 2015 10.1016/j.freeradbiomed.2014.09.031 Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases 

  84. Apoptosis Logue 18 537 2013 10.1007/s10495-013-0818-6 New directions in ER stress-induced cell death 

  85. Mol. Cell Biol. Hamada 24 8007 2004 10.1128/MCB.24.18.8007-8017.2004 Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice 

  86. Circulation Fu 122 361 2010 10.1161/CIRCULATIONAHA.109.917914 Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload 

  87. Hypertension Liu 64 738 2014 10.1161/HYPERTENSIONAHA.114.03811 Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling 

  88. Reference deleted 

  89. J. Transl. Med. Duan 13 363 2015 10.1186/s12967-015-0725-4 MicroRNA regulation of unfolded protein response transcription factor XBP1 in the progression of cardiac hypertrophy and heart failure in vivo 

  90. Circ. Res. Thuerauf 99 275 2006 10.1161/01.RES.0000233317.70421.03 Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes 

  91. EMBO J. Lu 23 169 2004 10.1038/sj.emboj.7600030 Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2 

  92. Int. J. Mol. Sci. Li 17 332 2016 10.3390/ijms17030332 Crosstalk between autophagy and apoptosis: potential and emerging therapeutic targets for cardiac diseases 

  93. Int. J. Biol. Sci. Li 11 672 2015 10.7150/ijbs.11883 Functions of autophagy in pathological cardiac hypertrophy 

  94. Nat. Med. Nakai 13 619 2007 10.1038/nm1574 The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress 

  95. J. Mol. Cell Cardiol. Pfeifer 19 1179 1987 10.1016/S0022-2828(87)80528-X Short-term inhibition of cardiac cellular autophagy by isoproterenol 

  96. Cell. Death. Differ. Nishida 16 31 2009 10.1038/cdd.2008.163 The role of autophagy in the heart 

  97. Free Radic. Biol. Med. Ha 39 1570 2005 10.1016/j.freeradbiomed.2005.08.002 Attenuation of cardiac hypertrophy by inhibiting both mTOR and NFkappaB activation in vivo 

  98. J. Clin. Invest. Zhu 117 1282 2007 10.1172/JCI27523 Cardiac autophagy is a maladaptive response to hemodynamic stress 

  99. J. Cardiovasc. Pharmacol. Rifki 60 248 2012 10.1097/FJC.0b013e3182646cb1 Cardiac autophagy: good with the bad 

  100. J. Mol. Cell Cardiol. Nishida 95 11 2016 10.1016/j.yjmcc.2015.12.003 Autophagy during cardiac remodeling 

  101. Cardiovasc. Res. Kanamori 91 330 2011 10.1093/cvr/cvr073 The role of autophagy emerging in postinfarction cardiac remodelling 

  102. Exp. Cell. Res. Tuomainen 2017 10.1016/j.yexcr.2017.03.052 The role of cardiac energy metabolism in cardiac hypertrophy and failure 

  103. FEBS Lett. Chanda 590 2364 2016 10.1002/1873-3468.12297 Signaling pathways involved in cardiac energy metabolism 

  104. Cardiol. Rev. Azevedo 21 135 2013 10.1097/CRD.0b013e318274956d Energy metabolism in cardiac remodeling and heart failure 

  105. Heart Fail. Rev. Gupta 2017 10.1007/s10741-017-9623-6 A comprehensive review of the bioenergetics of fatty acid and glucose metabolism in the healthy and failing heart in nondiabetic condition 

  106. J. Mol. Cell Cardiol. Lei 36 567 2004 10.1016/j.yjmcc.2004.02.004 Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure 

  107. Cardiovasc. Res. Kolwicz 90 194 2011 10.1093/cvr/cvr071 Glucose metabolism and cardiac hypertrophy 

  108. J. Endocrinol. Guo 233 R131 2017 10.1530/JOE-16-0679 Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure 

  109. Circ. Heart Fail. Kato 3 420 2010 10.1161/CIRCHEARTFAILURE.109.888479 Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure 

  110. Cardiovasc. Res. Zhabyeyev 97 676 2013 10.1093/cvr/cvs424 Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload 

  111. J. Thorac. Cardiovasc. Surg. Amorim 140 1160 2010 10.1016/j.jtcvs.2010.08.003 Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression 

  112. J. Physiol. Garnier 551 491 2003 10.1113/jphysiol.2003.045104 Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles 

  113. Circulation Ye 103 1570 2001 10.1161/01.CIR.103.11.1570 High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model 

  114. Proc. Natl. Acad. Sci. U.S.A. Weiss 102 808 2005 10.1073/pnas.0408962102 ATP flux through creatine kinase in the normal, stressed, and failing human heart 

  115. Eur. Heart J. Ingwall 11 Suppl. B 108 1990 10.1093/eurheartj/11.suppl_B.108 Energetic correlates of cardiac failure: changes in the creatine kinase system in the failing myocardium 

  116. Genes Nutr. Hwang 2 323 2008 10.1007/s12263-007-0069-7 Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells 

  117. Hypertension Zhang 52 918 2008 10.1161/HYPERTENSIONAHA.108.114702 AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice 

  118. J. Biol. Chem. Horman 278 41970 2003 10.1074/jbc.M302403200 Myocardial ischemia and increased heart work modulate the phosphorylation state of eukaryotic elongation factor-2 

  119. Hypertension Xu 63 723 2014 10.1161/HYPERTENSIONAHA.113.02619 Metformin protects against systolic overload-induced heart failure independent of AMP-activated protein kinase α2 

  120. PLoS ONE Taneike 11 e0152628 2016 10.1371/journal.pone.0152628 mTOR hyperactivation by ablation of tuberous sclerosis complex 2 in the mouse heart induces cardiac dysfunction with the increased number of small mitochondria mediated through the down-regulation of autophag 

  121. Biochim. Biophys. Acta Bairwa 1862 2199 2016 10.1016/j.bbadis.2016.07.001 The role of AMPK in cardiomyocyte health and survival 

  122. Arterioscler. Thromb. Vasc. Biol. Zhang 26 1281 2006 10.1161/01.ATV.0000221230.08596.98 AMP-activated protein kinase is involved in endothelial NO synthase activation in response to shear stress 

  123. J. Biol. Chem. Mishra 283 10461 2008 10.1074/jbc.M800902200 AMP-activated protein kinase inhibits transforming growth factor-beta-induced Smad3-dependent transcription and myofibroblast transdifferentiation 

  124. Int. J. Biol. Sci. Ma 12 861 2016 10.7150/ijbs.14213 Asiatic acid protects against cardiac hypertrophy through activating AMPKα signalling pathway 

  125. Br. J. Pharmacol. Ma 173 1502 2016 10.1111/bph.13449 Protection against cardiac hypertrophy by geniposide involves the GLP-1 receptor/AMPKα signalling pathway 

  126. Mol. Med. Rep. Zong 12 1247 2015 10.3892/mmr.2015.3523 3,3′-Diindolylmethane attenuates cardiac H9c2 cell hypertrophy through 5′-adenosine monophosphate-activated protein kinase-α 

  127. PLoS ONE Zong 8 e53427 2013 10.1371/journal.pone.0053427 3,3′-Diindolylmethane protects against cardiac hypertrophy via 5′-adenosine monophosphate-activated protein kinase-α2 

  128. Mol. Nutr. Food Res. Deng 57 1680 2013 10.1002/mnfr.201300012 Indole-3-carbinol protects against pressure overload induced cardiac remodeling via activating AMPK-α 

  129. Int. J. Clin. Exp. Pathol. Li 8 5121 2015 DIM attenuates TGF-beta1-induced myofibroblast differentiation in neonatal rat cardiac fibroblasts 

  130. Am. J. Cardiovasc. Drugs Yao 14 433 2014 10.1007/s40256-014-0089-9 The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway 

  131. Curr. Pharm. Des. Aoyagi 17 1818 2011 10.2174/138161211796390976 Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure 

  132. Genes Dev. Chen 15 2203 2001 10.1101/gad.913901 Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene 

  133. Circulation DeBosch 113 2097 2006 10.1161/CIRCULATIONAHA.105.595231 Akt1 is required for physiological cardiac growth 

  134. Science Cho 292 1728 2001 10.1126/science.292.5522.1728 Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta) 

  135. Am. J. Physiol. Heart Circ. Physiol. Li 301 H1932 2011 10.1152/ajpheart.00755.2010 Myocardial injury after ischemia-reperfusion in mice deficient in Akt2 is associated with increased cardiac macrophage density 

  136. Mol. Cell Biol. Easton 25 1869 2005 10.1128/MCB.25.5.1869-1878.2005 Role for Akt3/protein kinase Bgamma in attainment of normal brain size 

  137. J. Clin. Invest. Nagoshi 115 2128 2005 10.1172/JCI23073 PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury 

  138. J. Biol. Chem. Matsui 277 22896 2002 10.1074/jbc.M200347200 Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart 

  139. Oncogene Avruch 25 6361 2006 10.1038/sj.onc.1209882 Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase 

  140. Circulation Shioi 107 1664 2003 10.1161/01.CIR.0000057979.36322.88 Rapamycin attenuates load-induced cardiac hypertrophy in mice 

  141. Am. J. Physiol. Cell. Physiol. Song 299 C1256 2010 10.1152/ajpcell.00338.2010 mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy 

  142. J. Cell Sci. Doble 116 1175 2003 10.1242/jcs.00384 GSK-3: tricks of the trade for a multi-tasking kinase 

  143. Br. J. Pharmacol. Sugden 153 Suppl. 1 S137 2008 10.1038/sj.bjp.0707659 Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis 

  144. Cardiovasc. Res. Oudit 82 250 2009 10.1093/cvr/cvp014 Cardiac regulation by phosphoinositide 3-kinases and PTEN 

  145. Annu. Rev. Physiol. Ronnebaum 72 81 2010 10.1146/annurev-physiol-021909-135931 The FoxO family in cardiac function and dysfunction 

  146. J. Biol. Chem. Skurk 280 20814 2005 10.1074/jbc.M500528200 The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling 

  147. Circulation Ni 114 1159 2006 10.1161/CIRCULATIONAHA.106.637124 Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling 

  148. Hypertension Zhou 60 802 2012 10.1161/HYPERTENSIONAHA.112.198895 Stem cell antigen 1 protects against cardiac hypertrophy and fibrosis after pressure overload 

  149. J. Mol. Med. (Berl.) Tang 87 249 2009 10.1007/s00109-008-0423-2 Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3beta signaling 

  150. J. Am. Heart Assoc. Sun 2 e000191 2013 10.1161/JAHA.113.000191 Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways 

  151. Cardiovasc. Res. Sun 89 374 2011 10.1093/cvr/cvq328 Cathepsin-L contributes to cardiac repair and remodelling post-infarction 

  152. J. Mol. Med. (Berl.) Bian 90 895 2012 10.1007/s00109-012-0883-2 Disruption of mindin exacerbates cardiac hypertrophy and fibrosis 

  153. Cardiovasc. Res. Yan 92 85 2011 10.1093/cvr/cvr159 Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3β and TGF-β1-Smad signalling 

  154. J. Clin. Endocrinol. Metab. Laughlin 89 114 2004 10.1210/jc.2003-030967 The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: the Rancho Bernardo Study 

  155. Physiol. Rev. Rose 90 1507 2010 10.1152/physrev.00054.2009 Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale 

  156. Transgenic Res. Gerits 16 281 2007 10.1007/s11248-006-9052-0 In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice 

  157. Genes Cells Hatano 8 847 2003 10.1046/j.1365-2443.2003.00680.x Essential role for ERK2 mitogen-activated protein kinase in placental development 

  158. EMBO J. Bueno 19 6341 2000 10.1093/emboj/19.23.6341 The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice 

  159. J. Biol. Chem. Hunter 270 23173 1995 10.1074/jbc.270.39.23173 Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice 

  160. Nat. Med. Lorenz 15 75 2009 10.1038/nm.1893 A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy 

  161. J. Biol. Chem. Maillet 283 31246 2008 10.1074/jbc.M806085200 DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility 

  162. Proc. Natl. Acad. Sci. U.S.A. Purcell 104 14074 2007 10.1073/pnas.0610906104 Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo 

  163. Circ. Res. Kehat 108 176 2011 10.1161/CIRCRESAHA.110.231514 Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth 

  164. J. Biol. Chem. Wang 273 5423 1998 10.1074/jbc.273.10.5423 Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells 

  165. J. Clin. Invest. Choukroun 102 1311 1998 10.1172/JCI3512 Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy 

  166. Biochem. Biophys. Res. Commun. Tachibana 343 1060 2006 10.1016/j.bbrc.2006.03.065 JNK1 is required to preserve cardiac function in the early response to pressure overload 

  167. J. Biol. Chem. Petrich 279 15330 2004 10.1074/jbc.M314142200 Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects 

  168. Circ. Res. Petrich 91 640 2002 10.1161/01.RES.0000035854.11082.01 c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes 

  169. J. Clin. Invest. Sadoshima 110 271 2002 10.1172/JCI0214938 The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy 

  170. J. Biol. Chem. Aoki 277 10244 2002 10.1074/jbc.M112355200 Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes 

  171. Circ. Res. Andreka 88 305 2001 10.1161/01.RES.88.3.305 Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis 

  172. Pharmacol. Ther. Javadov 144 202 2014 10.1016/j.pharmthera.2014.05.013 Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives 

  173. Proc. Natl. Acad. Sci. U.S.A. Liao 98 12283 2001 10.1073/pnas.211086598 The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy 

  174. Mol. Cell Biol. Nishida 24 10611 2004 10.1128/MCB.24.24.10611-10620.2004 p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload 

  175. J. Clin. Invest. Braz 111 1475 2003 10.1172/JCI200317295 Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling 

  176. J. Mol. Med. (Berl.) Thompson 87 1053 2009 10.1007/s00109-009-0520-x ATF3 transcription factor and its emerging roles in immunity and cancer 

  177. EMBO J. Tamura 24 2590 2005 10.1038/sj.emboj.7600742 Stress response gene ATF3 is a target of c-myc in serum-induced cell proliferation 

  178. Blood Cai 96 2140 2000 10.1182/blood.V96.6.2140 Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element 

  179. Am. J. Pathol. Okamoto 159 639 2001 10.1016/S0002-9440(10)61735-X Transgenic mice with cardiac-specific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction 

  180. PLoS ONE Zhou 6 e26744 2011 10.1371/journal.pone.0026744 Activating transcription factor 3 deficiency promotes cardiac hypertrophy, dysfunction, and fibrosis induced by pressure overload 

  181. World J. Biol. Chem. Joshi 5 321 2014 10.4331/wjbc.v5.i3.321 Mnk kinase pathway: cellular functions and biological outcomes 

  182. Mol. Cell Biol. Shveygert 30 5160 2010 10.1128/MCB.00448-10 Regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation by mitogen-activated protein kinase occurs through modulation of Mnk1-eIF4G interaction 

  183. Oncogene Yim 34 474 2015 10.1038/onc.2013.564 Casein kinase 1 regulates Sprouty2 in FGF-ERK signaling 

  184. Hypertension Yuan 68 1393 2016 10.1161/HYPERTENSIONAHA.116.07906 Mnk1 (mitogen-activated protein kinase-interacting kinase 1) deficiency aggravates cardiac remodeling in mice 

  185. J. Cell. Biochem. Zong 114 1058 2013 10.1002/jcb.24445 Baicalein protects against cardiac hypertrophy through blocking MEK-ERK1/2 signaling 

  186. Exp. Ther. Med. Zhang 10 2206 2015 10.3892/etm.2015.2816 Naringenin attenuates pressure overload-induced cardiac hypertrophy 

  187. Mol. Cell Biochem. Zhang 417 87 2016 10.1007/s11010-016-2716-z Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy 

  188. Int. J. Clin. Exp. Pathol. Yang 8 14345 2015 Cinnamaldehyde attenuates pressure overload-induced cardiac hypertrophy 

  189. Exp. Ther. Med. Zhou 7 1116 2014 10.3892/etm.2014.1598 Icariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways 

  190. Mol. Med. Rep. Zhou 11 4327 2015 10.3892/mmr.2015.3289 Icariin protects H9c2 cardiomyocytes from lipopolysaccharide-induced injury via inhibition of the reactive oxygen species-dependent c-Jun N-terminal kinases/nuclear factor-κB pathway 

  191. PPAR Res. Wei 2016 9174190 2016 10.1155/2016/9174190 Pioglitazone protected against cardiac hypertrophy via inhibiting AKT/GSK3β and MAPK signaling pathways 

  192. Hypertension Gao 67 841 2016 10.1161/HYPERTENSIONAHA.116.07140 Positive role for a negative calcineurin regulator in cardiac hypertrophy 

  193. Circ. Res. Wilkins 94 110 2004 10.1161/01.RES.0000109415.17511.18 Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy 

  194. Circulation Haq 103 670 2001 10.1161/01.CIR.103.5.670 Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure 

  195. Trends Cardiovasc. Med. Liu 20 148 2010 10.1016/j.tcm.2010.12.003 Calcineurin and electrical remodeling in pathologic cardiac hypertrophy 

  196. Mol. Cell Biol. Wilkins 22 7603 2002 10.1128/MCB.22.21.7603-7613.2002 Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth 

  197. J. Biol. Chem. Bourajjaj 283 22295 2008 10.1074/jbc.M801296200 NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure 

  198. J. Mol. Cell Cardiol. Heineke 52 62 2012 10.1016/j.yjmcc.2011.10.018 Cardiomyocyte calcineurin signaling in subcellular domains: from the sarcolemma to the nucleus and beyond 

  199. Biochem. Biophys. Res. Commun. Zaja 453 710 2014 10.1016/j.bbrc.2014.09.144 Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death 

  200. Circulation Kreusser 130 1262 2014 10.1161/CIRCULATIONAHA.114.006185 Cardiac CaM Kinase II genes δ and γ contribute to adverse remodeling but redundantly inhibit calcineurin-induced myocardial hypertrophy 

  201. Cardiovasc. Res. Davis 108 335 2015 10.1093/cvr/cvv234 Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling 

  202. J. Biol. Chem. Maillet 285 6716 2010 10.1074/jbc.M109.056143 Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function 

  203. Circulation Bisserier 131 390 2015 10.1161/CIRCULATIONAHA.114.010686 Carabin protects against cardiac hypertrophy by blocking calcineurin, Ras, and Ca2+/calmodulin-dependent protein kinase II signaling 

  204. J. Clin. Invest. Wu 125 4091 2015 10.1172/JCI81061 MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes 

  205. Transl. Res. Liu 166 459 2015 10.1016/j.trsl.2015.06.003 Peroxisome proliferator-activated receptor gamma coactivator 1 alpha protects cardiomyocytes from hypertrophy by suppressing calcineurin-nuclear factor of activated T cells c4 signaling pathway 

  206. Hypertension Bian 55 257 2010 10.1161/HYPERTENSIONAHA.109.135665 LIM and cysteine-rich domains 1 regulates cardiac hypertrophy by targeting calcineurin/nuclear factor of activated T cells signaling 

  207. Cell Death Dis. Yang 7 e2234 2016 10.1038/cddis.2016.140 The emerging role of Toll-like receptor 4 in myocardial inflammation 

  208. J. Mol. Cell Cardiol. Turner 94 189 2016 10.1016/j.yjmcc.2015.11.002 Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs) 

  209. Nat. Rev. Immunol. Cao 16 35 2016 10.1038/nri.2015.8 Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease 

  210. World J. Cardiol. Wagner 6 791 2014 10.4330/wjc.v6.i8.791 Innate immune receptors in heart failure: Side effect or potential therapeutic target? 

  211. Front. Physiol. Vilahur 5 496 2014 10.3389/fphys.2014.00496 Ischemia/reperfusion activates myocardial innate immune response: the key role of the toll-like receptor 

  212. Cardiovasc. Res. Dange 103 17 2014 10.1093/cvr/cvu067 Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension 

  213. Circulation Shishido 108 2905 2003 10.1161/01.CIR.0000101921.93016.1C Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction 

  214. Hypertens Res. Kaneko 40 110 2017 10.1038/hr.2016.117 Toll-like receptor-2 has a critical role in periodontal pathogen-induced myocardial fibrosis in the pressure-overloaded murine hearts 

  215. Nature Oka 485 251 2012 10.1038/nature10992 Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure 

  216. Biochim. Biophys. Acta Cao 1832 96 2013 10.1016/j.bbadis.2012.08.008 CpG-ODN, the TLR9 agonist, attenuates myocardial ischemia/reperfusion injury: involving activation of PI3K/Akt signaling 

  217. Shock Zhang 38 146 2012 10.1097/SHK.0b013e31825ce0de The toll-like receptor 9 agonist, CpG-oligodeoxynucleotide 1826, ameliorates cardiac dysfunction after trauma-hemorrhage 

  218. Am. J. Physiol. Heart Circ. Physiol. Omiya 311 H1485 2016 10.1152/ajpheart.00481.2016 Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation 

  219. Cardiovasc. Res. Boyd 72 384 2006 10.1016/j.cardiores.2006.09.011 Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response 

  220. Clin. Sci. (Lond.) Parapanov 129 187 2015 10.1042/CS20140444 Toll-like receptor 5 deficiency exacerbates cardiac injury and inflammation induced by myocardial ischaemia-reperfusion in the mouse 

  221. Biochim. Biophys. Acta Liu 1852 2456 2015 10.1016/j.bbadis.2015.08.013 Toll-like receptor 5 deficiency attenuates interstitial cardiac fibrosis and dysfunction induced by pressure overload by inhibiting inflammation and the endothelial-mesenchymal transition 

  222. Clin. Sci. (Lond.) Prieto 127 665 2014 10.1042/CS20140180 NOD1 receptor is up-regulated in diabetic human and murine myocardium 

  223. PLoS ONE Fernandez-Velasco 7 e45260 2012 10.1371/journal.pone.0045260 NOD1 activation induces cardiac dysfunction and modulates cardiac fibrosis and cardiomyocyte apoptosis 

  224. Cardiovasc. Res. Delgado 106 375 2015 10.1093/cvr/cvv118 NOD1, a new player in cardiac function and calcium handling 

  225. Life Sci. Liu 149 10 2016 10.1016/j.lfs.2016.02.039 NOD2 contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and inflammation 

  226. Cell. Physiol. Biochem. Li 32 1857 2013 10.1159/000356618 NOD2 deficiency protects against cardiac remodeling after myocardial infarction in mice 

  227. Lab. Invest. Zong 93 1128 2013 10.1038/labinvest.2013.99 NOD2 deletion promotes cardiac hypertrophy and fibrosis induced by pressure overload 

  228. Circ. Res. Gordon 108 1122 2011 10.1161/CIRCRESAHA.110.226928 Multiple facets of NF-κB in the heart: to be or not to NF-κB 

  229. Clin. Sci. (Lond.) Van der Heiden 118 593 2010 10.1042/CS20090557 Role of nuclear factor kappaB in cardiovascular health and disease 

  230. Cardiovasc. Res. Zelarayan 84 416 2009 10.1093/cvr/cvp237 NF-kappaB activation is required for adaptive cardiac hypertrophy 

  231. Cardiovasc. Res. Kawano 67 689 2005 10.1016/j.cardiores.2005.04.030 Blockade of NF-kappaB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II 

  232. PLoS ONE Dai 8 e53412 2013 10.1371/journal.pone.0053412 IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis 

  233. Circ. Res. Hikoso 105 70 2009 10.1161/CIRCRESAHA.108.193318 The I{kappa}B kinase {beta}/nuclear factor {kappa}B signaling pathway protects the heart from hemodynamic stress mediated by the regulation of manganese superoxide dismutase expression 

  234. Front. Physiol. Leucker 5 328 2014 10.3389/fphys.2014.00328 Endothelial dysfunction as a nexus for endothelial cell-cardiomyocyte miscommunication 

  235. J. Mol. Cell Cardiol. Weng 80 23 2015 10.1016/j.yjmcc.2014.11.009 Endothelial MRTF-A mediates angiotensin II induced cardiac hypertrophy 

  236. Life Sci. Vignon-Zellweger 118 219 2014 10.1016/j.lfs.2013.12.003 Endothelin-1 overexpression and endothelial nitric oxide synthase knock-out induce different pathological responses in the heart of male and female mice 

  237. Circulation Tirziu 122 928 2010 10.1161/CIRCULATIONAHA.108.847731 Cell communications in the heart 

  238. Curr. Heart Fail. Rep. Tschope 11 436 2014 10.1007/s11897-014-0219-3 New insights in (inter)cellular mechanisms by heart failure with preserved ejection fraction 

  239. Am. J. Physiol. Heart Circ. Physiol. Vettel 306 H1246 2014 10.1152/ajpheart.00852.2013 PDE2-mediated cAMP hydrolysis accelerates cardiac fibroblast to myofibroblast conversion and is antagonized by exogenous activation of cGMP signaling pathways 

  240. J. Clin. Med. Piera-Velazquez 5 45 2016 10.3390/jcm5040045 Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases 

  241. Am. J. Physiol. Heart Circ. Physiol. Gasparics 310 H1055 2016 10.1152/ajpheart.00042.2016 When the endothelium scores an own goal: endothelial cells actively augment metastatic extravasation through endothelial-mesenchymal transition 

  242. Stem Cells Int. Krenning 2016 9762959 2016 10.1155/2016/9762959 Endothelial plasticity: shifting phenotypes through force feedback 

  243. Circulation Widyantoro 121 2407 2010 10.1161/CIRCULATIONAHA.110.938217 Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition 

  244. J. Rheumatol. Cipriani 42 1808 2015 10.3899/jrheum.150088 The endothelial-mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by macitentan, a dual endothelin-1 receptor antagonist 

  245. J. Mol. Cell Cardiol. Fujiu 70 64 2014 10.1016/j.yjmcc.2014.01.013 Fibroblast-mediated pathways in cardiac hypertrophy 

  246. Circ. Res. Travers 118 1021 2016 10.1161/CIRCRESAHA.115.306565 Cardiac fibrosis: the fibroblast awakens 

  247. Circ. Res. Leask 116 1269 2015 10.1161/CIRCRESAHA.116.305381 Getting to the heart of the matter: new insights into cardiac fibrosis 

  248. Cardiovasc. Res. Santiago 89 139 2011 10.1093/cvr/cvq261 Preferential accumulation and export of high molecular weight FGF-2 by rat cardiac non-myocytes 

  249. Genes Cells Matsumoto 18 544 2013 10.1111/gtc.12055 Angiotensin II-induced cardiac hypertrophy and fibrosis are promoted in mice lacking Fgf16 

  250. J. Mol. Cell Cardiol. Valiente-Alandi 91 228 2016 10.1016/j.yjmcc.2016.01.011 Extracellular matrix-mediated cellular communication in the heart 

  251. Hypertension Xia 58 902 2011 10.1161/HYPERTENSIONAHA.111.175323 Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism 

  252. Immunity Epelman 40 91 2014 10.1016/j.immuni.2013.11.019 Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation 

  253. Circulation Frieler 131 1019 2015 10.1161/CIRCULATIONAHA.114.008788 Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling 

  254. Circ. Res. Dewald 96 881 2005 10.1161/01.RES.0000163017.13772.3a CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts 

  255. J. Biomed. Sci. Cheng 24 7 2017 10.1186/s12929-017-0315-2 Harnessing the early post-injury inflammatory responses for cardiac regeneration 

  256. Am. J. Pathol. van Amerongen 170 818 2007 10.2353/ajpath.2007.060547 Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice 

  257. J. Exp. Med. Nahrendorf 204 3037 2007 10.1084/jem.20070885 The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions 

  258. J. Cardiovasc. Pharmacol. Ther. Zandbergen 14 68 2009 10.1177/1074248408329860 Macrophage depletion in hypertensive rats accelerates development of cardiomyopathy 

  259. Am. J. Physiol. Heart Circ. Physiol. Xu 301 H538 2011 10.1152/ajpheart.01114.2010 CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin II-induced cardiac fibrosis 

  260. J. Mol. Cell Cardiol. Younce 76 172 2014 10.1016/j.yjmcc.2014.08.022 Exendin-4 improves cardiac function in mice overexpressing monocyte chemoattractant protein-1 in cardiomyocytes 

  261. Circ. Res. Huber 99 1109 2006 10.1161/01.RES.0000249405.13536.49 Coxsackievirus B3 induces T regulatory cells, which inhibit cardiomyopathy in tumor necrosis factor-alpha transgenic mice 

  262. Circulation Laroumanie 129 2111 2014 10.1161/CIRCULATIONAHA.113.007101 CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload 

  263. Clin. Sci. (Lond.) Wu 130 2061 2016 10.1042/CS20160074 OX40 regulates pressure overload-induced cardiac hypertrophy and remodelling via CD4+ T-cells 

  264. Circulation Kvakan 119 2904 2009 10.1161/CIRCULATIONAHA.108.832782 Regulatory T cells ameliorate angiotensin II-induced cardiac damage 

  265. J. Hypertens. Kanellakis 29 1820 2011 10.1097/HJH.0b013e328349c62d CD4+CD25+Foxp3+regulatory T cells suppress cardiac fibrosis in the hypertensive heart 

  266. Basic Res. Cardiol. Tang 107 232 2012 10.1007/s00395-011-0232-6 Regulatory T cells ameliorate cardiac remodeling after myocardial infarction 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로