$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes 원문보기

Journal of alloys and compounds, v.727, 2017년, pp.721 - 727  

Jeong, Hyeon Taek (Division of Energy and Environmental Engineering, Daejin University, 1007 Hoguk Road, Pocheon-si, Gyeonggi-do, 487-711, South Korea) ,  Kim, Yong Ryeol (Division of Energy and Environmental Engineering, Daejin University, 1007 Hoguk Road, Pocheon-si, Gyeonggi-do, 487-711, South Korea) ,  Kim, Byung Chul (Department of Chemistry, Dongguk University-Seoul, Pil-dong 3-ga, Jung-gu, Seoul, 100-715, South Korea)

Abstract AI-Helper 아이콘AI-Helper

The reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composites are coated onto the polycaprolactone (PCL) substrate via spray coating technique to prepare a flexible supercapacitor. The electrochemical properties of the flexible PCL supercapacitor as a function of bending cycles an...

주제어

참고문헌 (54)

  1. Proc. Natl. Acad. Sci. U. S. A. Someya 101 9966 2004 10.1073/pnas.0401918101 A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications 

  2. Proc. Natl. Acad. Sci. U. S. A. Someya 102 12321 2005 10.1073/pnas.0502392102 Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes 

  3. J. Micromech. Microeng. Cheng 19 115001 2009 10.1088/0960-1317/19/11/115001 A flexible capacitive tactile sensing array with floating electrodes 

  4. Int. J. Precis. Eng. Manuf. Cho 10 171 2009 10.1007/s12541-009-0064-6 Review of manufacturing processes for soft biomimetic robots 

  5. Nat. Mater. Pang 11 795 2012 10.1038/nmat3380 A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres 

  6. Adv. Mater. Kwak 23 3949 2011 10.1002/adma.201101694 Rational design and enhanced biocompatibility of a dry adhesive medical skin patch 

  7. Adv. Healthc. Mater. Bae 2 109 2013 10.1002/adhm.201200098 Enhanced skin adhesive patch with modulus-tunable composite micropillars 

  8. Sci. Transl. Med. Viventi 2 2010 10.1126/scitranslmed.3000738 A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology 

  9. Annu. Rev. Biomed. Eng. Kim 14 113 2012 10.1146/annurev-bioeng-071811-150018 Flexible and stretchable electronics for biointegrated devices 

  10. Nat. Mater. Boland 9 790 2010 10.1038/nmat2861 Flexible electronics: within touch of artificial skin 

  11. Nat. Mater. Sekitani 9 1015 2010 10.1038/nmat2896 Flexible organic transistors and circuits with extreme bending stability 

  12. Nat. Nano Lipomi 6 788 2011 10.1038/nnano.2011.184 Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes 

  13. Nat. Phot. Han 6 105 2012 10.1038/nphoton.2011.318 Extremely efficient flexible organic light-emitting diodes with modified graphene anode 

  14. Adv. Mater. Lee 23 1752 2011 10.1002/adma.201004099 Transparent flexible organic transistors based on monolayer graphene electrodes on plastic 

  15. Nat. Nano Yamada 6 296 2011 10.1038/nnano.2011.36 A stretchable carbon nanotube strain sensor for human-motion detection 

  16. Nano Lett. Takahashi 11 5408 2011 10.1021/nl203117h Carbon nanotube active-matrix backplanes for conformal electronics and sensors 

  17. Adv. Mater. Kim 21 3703 2009 10.1002/adma.200900405 Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper 

  18. J. Appl. Polym. Sci. Yeh 112 660 2009 10.1002/app.29485 Preparation and characterization of biodegradable polycaprolactone/multiwalled carbon nanotubes nanocomposites 

  19. Macromol. Symp. Janigova 301 1 2011 10.1002/masy.201150301 Nanocomposites with biodegradable polycaprolactone matrix 

  20. Mater. Lett. Diba 65 1931 2011 10.1016/j.matlet.2011.03.047 Novel forsterite/polycaprolactone nanocomposite scaffold for tissue engineering applications 

  21. Polymer Saeed 47 8019 2006 10.1016/j.polymer.2006.09.012 Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite 

  22. Small Dai 8 1130 2012 10.1002/smll.201101594 Carbon nanomaterials for advanced energy conversion and storage 

  23. ACS Appl. Mater. Interfaces Zhao 5 9008 2013 10.1021/am402130j Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte 

  24. Nature Novoselov 490 192 2012 10.1038/nature11458 A roadmap for graphene 

  25. J. Mater. Chem. Bose 22 767 2012 10.1039/C1JM14468E Carbon-based nanostructured materials and their composites as supercapacitor electrodes 

  26. Energy & Environ. Sci. Jiang 6 41 2013 10.1039/C2EE23284G 3D carbon based nanostructures for advanced supercapacitors 

  27. Adv. Funct. Mater. Hong 25 2015 Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting conditions 

  28. Adv. Energy Mater. Kim 5 2015 10.1002/aenm.201500959 Flexible electronics: recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions (adv. Energy mater. 22/2015) 

  29. Nano Lett. Kaempgen 9 1872 2009 10.1021/nl8038579 Printable thin film supercapacitors using single-walled carbon nanotubes 

  30. Nano Lett. Hu 10 708 2010 10.1021/nl903949m Stretchable, porous, and conductive energy textiles 

  31. Proc. Natl. Acad. Sci. Pushparaj 104 13574 2007 10.1073/pnas.0706508104 Flexible energy storage devices based on nanocomposite paper 

  32. Sci. Rep. Huang 3 2013 10.1038/srep02393 One-step spray processing of high power all-solid-state supercapacitors 

  33. ACS Nano Kang 6 6400 2012 10.1021/nn301971r All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels 

  34. J. Mater. Chem. Zhang 20 5983 2010 10.1039/c000417k Graphene-based materials as supercapacitor electrodes 

  35. Phys. Chem. Chem. Phys. Hou 13 15384 2011 10.1039/c1cp21915d Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries 

  36. Science El-Kady 335 1326 2012 10.1126/science.1216744 Laser scribing of high-performance and flexible graphene-based electrochemical capacitors 

  37. ACS Nano Luo 5 8943 2011 10.1021/nn203115u Compression and aggregation-resistant particles of crumpled soft sheets 

  38. ACS Nano Kim 9 2015 10.1021/acsnano.5b03732 Extremely durable, flexible supercapacitors with greatly improved performance at high temperatures 

  39. Nano Lett. Stoller 8 3498 2008 10.1021/nl802558y Graphene-based ultracapacitors 

  40. Phys. Chem. Chem. Phys. Cheng 13 17615 2011 10.1039/c1cp21910c Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density 

  41. J. Phys. Chem. Lett. Yu 1 467 2009 10.1021/jz9003137 Self-assembled graphene/carbon nanotube hybrid films for supercapacitors 

  42. Nano Lett. Cheng 12 4206 2012 10.1021/nl301804c Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors 

  43. J. Mater. Chem. Yang 21 2374 2011 10.1039/C0JM03199B Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors 

  44. J. Mater. Chem. Huang 22 3591 2012 10.1039/c2jm15048d Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors 

  45. ACS Appl. Mater. Interfaces Gao 4 7020 2012 10.1021/am302280b Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes 

  46. Small Weng 7 3434 2011 10.1002/smll.201101491 Fabrication and characterization of cytocompatible polypyrrole films inkjet printed from nanoformulations cytocompatible, inkjet-printed polypyrrole films 

  47. Polym. Degrad. Stab. Wang 95 207 2010 10.1016/j.polymdegradstab.2009.11.023 Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro 

  48. J. Power Sources Gamby 101 109 2001 10.1016/S0378-7753(01)00707-8 Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors 

  49. J. Electrochem. Soc. Di Fabio 148 A845 2001 10.1149/1.1380254 Carbon-Poly(3-methylthiophene) hybrid supercapacitors 

  50. J. Mater. Chem. A Chen 2 10756 2014 10.1039/c4ta00567h Flexible supercapacitors based on carbon nanomaterials 

  51. J. Electrochem. Soc. Kurig 157 A272 2010 10.1149/1.3274208 Electrochemical characteristics of carbide-derived Carbon ? 1 -Ethyl-3-methylimidazolium tetrafluoroborate supercapacitor cells 

  52. J. Electrochem. Soc. An 149 A1058 2002 10.1149/1.1491235 High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole 

  53. Diam. Relat. Mater. Show 15 2086 2006 10.1016/j.diamond.2006.08.004 Decrease in equivalent series resistance of electric double-layer capacitor by addition of carbon nanotube into the activated carbon electrode 

  54. J. Power Sources Prabaharan 161 730 2006 10.1016/j.jpowsour.2006.03.074 Nanostructured mesoporous carbon as electrodes for supercapacitors 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로