$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Study on thermal conductivity and electrical resistivity of Al-Cu alloys obtained by Boltzmann transport equation and first-principles simulation: Semi-empirical approach

Journal of alloys and compounds, v.727, 2017년, pp.1237 - 1242  

Choi, Garam (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea) ,  Kim, Hyo Seok (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea) ,  Lee, Kyungmoon (Materials Development Center, Hyundai Motor Company, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, Republic of Korea) ,  Park, Sang Hyun (Korea Institute of Energy Research, Advanced Materials and Devices Laboratory, 152 Gajeong-ro, Yuseonggu, Daejeon, 34129, Republic of Korea) ,  Cha, JinHyeok (Materials Development Center, Hyundai Motor Company, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, Republic of Korea) ,  Chung, In (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea) ,  Lee, Won Bo (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Boltzmann transport equation (BTE) and first-principle approaches are applied in the estimation of the thermal conductivity and electrical resistivity of Al-Cu alloys with varying Al-Cu ratios. The electronic transport properties of various Al-Cu alloys are predicted by solving the BTE using a relax...

주제어

참고문헌 (50)

  1. J. Mater. Process. Technol Ouyang 172 110 2006 10.1016/j.jmatprotec.2005.09.013 Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper 

  2. Bull. Alloy Phase Diagr. Cahn 4 349 1983 10.1007/BF02868070 A historical perspective on the utilization of phase diagrams for precipitation hardening 

  3. Inorg. Chem. Sebastian 49 10468 2010 10.1021/ic101502e New intermetallics YbAu 2 in 4 and Yb 2 Au 3 in 5 

  4. Inorg. Chem. Sebastian 49 9574 2010 10.1021/ic101340a Indium flux-growth of Eu2AuGe3: a new germanide with an AlB2 superstructure 

  5. Scr. Mater. Wang 51 665 2004 10.1016/j.scriptamat.2004.06.018 First-principles study of the formation of Guinier-Preston zones in Al-Cu alloys 

  6. J. Solid State Chem. Shi 182 2664 2009 10.1016/j.jssc.2009.07.026 First-principles studies of Al-Ni intermetallic compounds 

  7. Calphad Gao 47 196 2014 10.1016/j.calphad.2014.10.004 First-principles calculations of finite-temperature thermodynamic properties of binary solid solutions in the Al-Cu-Mg system 

  8. Exp. Therm. Fluid Sci. Aksoz 34 1507 2010 10.1016/j.expthermflusci.2010.07.015 Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al-Cu alloys 

  9. Happian-Smith 2001 An Introduction to Modern Vehicle Design 

  10. Int. Mater. Rev. Luo 49 13 2004 10.1179/095066004225010497 Recent magnesium alloy development for elevated temperature applications 

  11. J. Electron. Mater. Wang 42 1073 2013 10.1007/s11664-013-2516-0 Transport properties of bulk thermoelectrics: an international round-robin study, Part II: thermal diffusivity, specific heat, and thermal conductivity 

  12. Tritt 1976 Thermal Conductivity 14 

  13. J. Am. Chem. Soc. Poudeu 128 14347 2006 10.1021/ja0647811 Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb 0.2Te10-xSex bulk materials 

  14. Phys. Rev. B Peng 84 125207 2011 10.1103/PhysRevB.84.125207 Electronic structure and transport properties of doped PbSe 

  15. Phys. Rev. B Guo 92 115202 2015 10.1103/PhysRevB.92.115202 First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS 

  16. Phys. Rev. B - Condens. Matter Mater. Phys. Page 92 1 2015 10.1103/PhysRevB.92.174102 Phase separation of full-Heusler nanostructures in half-Heusler thermoelectrics and vibrational properties from first-principles calculations 

  17. J. Chem. Phys. Wang 131 224704 2009 10.1063/1.3270161 First-principles investigation of organic semiconductors for thermoelectric applications 

  18. Van Den Eynde 2016 Influence of the Relaxation Time Approximation on First Principle Study of Transport Coefficients in Thermoelectric Material PbTe 

  19. J. Phys. C Solid State Phys. Meddins 9 1263 2001 10.1088/0022-3719/9/7/017 The thermal and thermoelectric properties of sintered germanium-silicon alloys 

  20. Nat. Mater. Snyder 7 105 2008 10.1038/nmat2090 Complex thermoelectric materials 

  21. Phys. Rev. Lett. Bilc 114 136601 2015 10.1103/PhysRevLett.114.136601 Low-Dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states 

  22. J. Appl. Phys. Zhang 116 23706 2014 10.1063/1.4889921 Enhanced thermoelectric performance of a quintuple layer of Bi 2Te3 

  23. Wu 29 445 2016 Electronic structures and thermoelectric properties of two-dimensional MoS 2/MoSe 2 heterostructures 

  24. Intermetallics Tougait 12 219 2004 10.1016/j.intermet.2003.09.012 Stoichiometry of UAl4 

  25. Chem. - A Eur. J Zhang 16 7422 2010 10.1002/chem.201000026 Synthesis, characterization, and bipolar transporting behavior of a new twisted polycyclic aromatic hydrocarbon: 1′,4′-Diphenyl-naphtho-(2′.3′:1.2)-pyrene-6′-nitro-7′-methyl carboxylate 

  26. Model. Simul. Mater. Sci. Eng. Ha 25 55011 2017 10.1088/1361-651X/aa6a2d Effect of lattice relaxation on thermal conductivity of fcc-based structures: an efficient procedure of molecular dynamics simulation 

  27. J. Am. Chem. Soc. Zhang 131 9896 2009 10.1021/ja903881m Chalcogenide chemistry in ionic liquids: nonlinear optical wave-mixing properties of the double-cubane compound [Sb 7 S 8 Br 2 ](AlCl 4 ) 3 

  28. Phys. Rev. B Kresse 59 1758 1999 10.1103/PhysRevB.59.1758 From ultrasoft pseudopotentials to the projector augmented-wave method 

  29. Phys. Rev. Lett. Perdew 77 3865 1996 10.1103/PhysRevLett.77.3865 Generalized gradient approximation made simple 

  30. Phys. Rev. B Kresse 47 558 1993 10.1103/PhysRevB.47.558 Ab initio molecular dynamics for liquid metals 

  31. Comput. Mater. Sci. Kresse 6 15 1996 10.1016/0927-0256(96)00008-0 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set 

  32. Phys. Rev. B Pack 16 1748 1977 10.1103/PhysRevB.16.1748 Special points for Brillouin-zone integrations 

  33. Twombly 2015 A Study of Thermoelectric Properties of Graphene Materials 

  34. Proc. Natl. Acad. Sci. USA Mahan 93 7436 1996 10.1073/pnas.93.15.7436 The best thermoelectric 

  35. Comput. Phys. Commun. Madsen 175 67 2006 10.1016/j.cpc.2006.03.007 BoltzTraP. A code for calculating band-structure dependent quantities 

  36. Kittel 2005 Introduction to Solid State Physics 

  37. J. Phys. Chem. Ref. Data Ho 12 1983 10.1063/1.555684 Electrical resistivity of ten selected binary alloy systems 

  38. Kresse 2016 VASP the GUIDE 

  39. Phys. Rev. B Peng 89 195206 2014 10.1103/PhysRevB.89.195206 Elemental tellurium as a chiral p-type thermoelectric material 

  40. Proc. Phys. Soc. Sect. A White 66 844 1953 10.1088/0370-1298/66/9/112 Thermal conductivity of silver at low temperatures 

  41. Mater. Sci. Eng. R Reports Pichanusakorn 67 19 2010 10.1016/j.mser.2009.10.001 Nanostructured thermoelectrics 

  42. Int. J. Thermophys. Brandt 28 1429 2007 10.1007/s10765-006-0144-0 Electrical resistivity and thermal conductivity of pure aluminum and aluminum alloys up to and above the melting temperature 

  43. Phys. Rev. B Thomas 86 45205 2012 10.1103/PhysRevB.86.045205 Detailed calculation of the thermoelectric figure of merit in an n-doped SiGe alloy 

  44. MRS Bull. Tritt 31 188 2006 10.1557/mrs2006.44 Thermoelectric materials, phenomena, and applications: a Bird's eye view 

  45. J. Phys. F Met. Phys. De Lang 8 L39 1978 10.1088/0305-4608/8/2/005 The lattice thermal conductivity of very pure aluminium 

  46. Adv. Mater. Dresselhaus 19 1043 2007 10.1002/adma.200600527 New directions for low-dimensional thermoelectric materials 

  47. Phys. Rev. B Ahmad 81 165203 2010 10.1103/PhysRevB.81.165203 Energy and temperature dependence of relaxation time and Wiedemann-Franz law on PbTe 

  48. J. Phase Equilib. Okamoto 23 455 2002 10.1361/105497102770331497 Al-Zr (Aluminum-Zirconium) 

  49. J. Phase Equilib. Murray 3 60 1982 10.1007/BF02873413 The Al? Mg (aluminum? magnesium) system 

  50. Phys. Chem. Liq. Wang 54 507 2016 10.1080/00319104.2015.1121784 Study on the microstructure and liquid-solid correlation of Al-Mg alloys 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로