$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions

Applied energy, v.205, 2017년, pp.1059 - 1067  

Jeon, Yongseok (Corresponding author.) ,  Kim, Sunjae ,  Kim, Dongwoo ,  Chung, Hyun Joon ,  Kim, Yongchan

Abstract AI-Helper 아이콘AI-Helper

Even though a condenser outlet split (COS) ejector cycle offers several advantages over a standard two-phase ejector cycle, few experimental investigations on the performance of the COS ejector cycle are available in the literature. The objective of this study is to investigate the effects of the va...

주제어

참고문헌 (45)

  1. Appl Energy Anker-Nilssen 76 189 2003 10.1016/S0306-2619(03)00056-4 Household energy use and the environment - a conflicting issue 

  2. Appl Energy Gazda 101 49 2013 10.1016/j.apenergy.2012.05.006 The estimation of energy efficiency for hybrid refrigeration system 

  3. Appl Energy Han 106 383 2013 10.1016/j.apenergy.2013.01.067 New hybrid absorption-compression refrigeration system based on cascade use of mid-temperature waste heat 

  4. Appl Energy Nunes 158 540 2015 10.1016/j.apenergy.2015.08.098 Modeling, simulation and optimization of a vapor compression refrigeration system dynamic and steady state response 

  5. Appl Energy Wu 136 1004 2014 10.1016/j.apenergy.2014.05.068 Cycle performance study of ethyl fluoride in the refrigeration system of HFC-134a 

  6. Int J Air-Cond Refrig Prashantha 21 1350001 2013 10.1142/S2010132513500016 Design and analysis of thermoacoustic refrigerator 

  7. Int J Air-Cond Refrig Cuong 24 1650004 2016 10.1142/S2010132516500048 The comparison of experiment results and CFD simulation in the heat pump system using thermobank and two-phase ejector for heating room and cold storage 

  8. Int J Air-Cond Refrig Shi 24 1650006 2016 10.1142/S2010132516500061 Study on economized vapor injection heat pump system using refrigerant R32 

  9. Kornhauser AA. The use of an ejector as a refrigerant expander. In: Proceedings of the USN/IIR-Purdue refrigeration conference, West Lafayette (IN); 1990. 

  10. Gay N. Refrigerating system, U.S. Patent Application Publication US1836318; 1931. 

  11. Appl Energy Chesi 97 374 2012 10.1016/j.apenergy.2012.02.040 Suitability of coupling a solar powered ejection cycle with a vapour compression refrigerating machine 

  12. Appl Energy Farshi 103 700 2013 10.1016/j.apenergy.2012.11.022 Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems 

  13. Appl Energy Xingyang 160 912 2015 10.1016/j.apenergy.2015.05.001 Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture 

  14. Appl Energy Chen 144 139 2015 10.1016/j.apenergy.2015.01.139 Conventional and advanced exergy analysis of an ejector refrigeration system 

  15. Appl Energy Lan 38 181 1991 10.1016/0306-2619(91)90032-S Non-uniform velocity effect in a constant-area ejector without a diffuser 

  16. Energy Procedia Xingyang 75 1033 2015 10.1016/j.egypro.2015.07.369 Thermodynamic analysis of a combined power and ejector refrigeration cycle using zeotropic mixture 

  17. Appl Energy Zhang 184 404 2016 10.1016/j.apenergy.2016.10.017 Evaluation of ejector performance for an organic Rankine cycle combined power and cooling system 

  18. Appl Energy Khennich 179 1020 2016 10.1016/j.apenergy.2016.07.053 Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems 

  19. Appl Energy Chen 185 2 2074 2017 10.1016/j.apenergy.2016.01.103 Theoretical analysis of ejector refrigeration system performance under overall modes 

  20. Int J Refrig Lucas 43 154 2014 10.1016/j.ijrefrig.2014.03.003 Numerical investigation of a two-phase CO2 ejector 

  21. Int J Refrig Elbel 31 411 2008 10.1016/j.ijrefrig.2007.07.013 Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation 

  22. Int J Refrig Disawas 27 587 2004 10.1016/j.ijrefrig.2004.04.002 Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device 

  23. Appl Energy Li 121 96 2014 10.1016/j.apenergy.2014.01.079 Performance characteristics of R1234yf ejector-expansion refrigeration 

  24. Oshitani H, Yamanaka Y, Takeuchi H, Kusano K, Ikegami M, Takano Y, et al. Vapor compression cycle having ejector. U.S. Patent Application Publication US2005/0268644 A1. 

  25. Int J Refrig Lawrence 36 1220 2013 10.1016/j.ijrefrig.2013.03.007 Theoretical and practical comparison of two-phase ejector refrigeration cycles including first and second law analysis 

  26. Appl Energy Chen 102 931 2013 10.1016/j.apenergy.2012.09.032 Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle 

  27. Int J Refrig Elbel 27 724 2004 10.1016/j.ijrefrig.2004.07.019 Flash gas bypass for improving the performance of transcritical R744 systems that use microchannel evaporators 

  28. Int J Refrig Li 28 766 2005 10.1016/j.ijrefrig.2004.10.008 Transcritical CO2 refrigeration cycle with ejector-expansion device 

  29. Int J Refrig Lucas 35 1595 2012 10.1016/j.ijrefrig.2012.05.010 Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector 

  30. Renew Sustain Ener Rev Sumeru 16 4927 2012 10.1016/j.rser.2012.04.058 A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle 

  31. Int J Energ Res Bilir 33 469 2009 10.1002/er.1488 Performance improvement of the vapour compression refrigeration cycle by a two-phase constant area ejector 

  32. Int J Energ Res Sarkar 34 84 2010 10.1002/er.1558 Geometric parameter optimization of ejector-expansion refrigeration cycle with natural refrigerants 

  33. Renew Sustain Ener Rev Sarkar 16 6647 2012 10.1016/j.rser.2012.08.007 Ejector enhanced vapor compression refrigeration and heat pump systems - a review 

  34. Harrell G, Kornhauser A. Performance tests of a two-phase ejector. Proceedings of the 30th Intersociety Energy Conversion Engineering Conference, Orlando (FL); 1995. 

  35. Int J Refrig Ersoy 43 97 2014 10.1016/j.ijrefrig.2014.04.006 Preliminary experimental results on the R134a refrigeration system using a two-phase ejector as an expander 

  36. 10.1016/j.applthermaleng.2015.11.012 Palacz M, Smolka J, Kus W, Fic A, Bulinski Z, Nowak A, et al. CFD-based shape optimization of a CO2 two-phase ejector mixing section. Appl Them Eng 2016;95:62-9. 

  37. Desalination Wu 353 15 2014 10.1016/j.desal.2014.09.002 Numerical investigation of the influences of mixing chamber geometries on steam ejector performance 

  38. Int J Refrig Banasiak 35 1617 2012 10.1016/j.ijrefrig.2012.04.012 Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump 

  39. Int J Refrig Banasiak 40 328 2014 10.1016/j.ijrefrig.2013.12.002 A CFD-based investigation of the energy performance of two-phase R744 ejectors to recover the expansion work in refrigeration systems: an irreversibility analysis 

  40. Int Heat Mass Tran Wongwises 48 4282 2005 10.1016/j.ijheatmasstransfer.2005.04.017 Performance of the two-phase ejector expansion refrigeration cycle 

  41. Appl Therm Eng Chaiwongsa 30 601 2007 Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device 

  42. Appl Therm Eng Chaiwongsa 28 467 2008 10.1016/j.applthermaleng.2007.05.005 Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device 

  43. Int J Refrig Lawrence 38 310 2014 10.1016/j.ijrefrig.2013.08.009 Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf 

  44. Energy Convers Manage Yan 105 509 2015 10.1016/j.enconman.2015.07.087 Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle 

  45. 10.6028/NIST.TN.1297 Taylor BN, Kuyatt CE. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. NIST Technical Note 1297; 1994. 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로