$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects of glucose concentration on 1,18- cis -octadec-9-enedioic acid biotransformation efficiency and lipid body formation in Candida tropicalis 원문보기

Scientific reports, v.7, 2017년, pp.13842 -   

Funk, Irina (Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany) ,  Sieber, Volker (Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany) ,  Schmid, Jochen (Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany)

Abstract AI-Helper 아이콘AI-Helper

The unsaturated long-chain α,ω-dicarboxylic acid 1,18-cis-octadec-9-enedioic acid (cis-ODA) is a versatile precursor of various valuable compounds, such as polymers, and can be obtained from renewable resources. This makes cis-ODA highly attractive for the chemical industry where there i...

참고문헌 (31)

  1. 1. Picataggio S Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids Nat. Biotechnol. 1992 10 894 898 10.1038/nbt0892-894 

  2. 2. Huf S Krügener S Hirth T Rupp S Zibek S Biotechnological synthesis of long-chain dicarboxylic acids as building blocks for polymers Eur. J. Lipid. Sci. Tech. 2011 113 548 561 10.1002/ejlt.201000112 

  3. 3. Pardal F Unsaturated polyamides from bio-based Z-octadec-9-enedioic acid Macromol. Chem. Phys. 2008 209 64 74 10.1002/macp.200700319 

  4. 4. Ngo HL Jones K Foglia TA Metathesis of unsaturated fatty acids: Synthesis of long-chain unsaturated-α,ω-dicarboxylic acid J. Am. Oil Chem. Soc. 2006 83 629 634 10.1007/s11746-006-1249-0 

  5. 5. Elmkaddem MK de Caro P Thiébaud-Roux S Mouloungui Z Vedrenne E Ultrasound-assisted self-metathesis reactions of monounsaturated fatty acids OCL 2016 23 D507 10.1051/ocl/2016038 

  6. 6. Yi Z-H Rehm H-J Formation and degradation of D 9 -1,18-octadecenedioic acid from oleic acid by Candida tropicalis Appl. Microbiol. Biotechnol. 1988 28 520 526 10.1007/BF00250405 

  7. 7. Fabritius D Schäfer HJ Steinbüchel A Identification and production of 3-hydroxy-Δ 9 -cis-1,18-octadecenedioic acid by mutants of Candida tropicalis Appl. Microbiol. Biotechnol. 1996 45 342 348 10.1007/s002530050694 

  8. 8. Zibek S Wagner W Hirth T Rupp S Huf S Fermentative Herstellung der α,ω-Dicarbonsäure 1,18-Oktadecendisäure als Grundbaustein für biobasierte Kunststoffe Chemie Ingenieur Technik. 2009 81 1797 1808 10.1002/cite.200900092 

  9. 9. Yang Y Two-step biocatalytic route to biobased functional polyesters from ω-carboxy fatty acids and diols Biomacromolecules. 2010 11 259 268 10.1021/bm901112m 20000460 

  10. 10. Liu S Li C Xie L Cao Z Intracellular pH and metabolic activity of long-chain dicarylic acid-producing yeast Candida tropicalis J. Biosci. Bioeng. 2003 96 349 353 10.1016/S1389-1723(03)90135-6 16233535 

  11. 11. Mishra P Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production Biotechnol. Bioeng. 2016 113 1993 2004 10.1002/bit.25955 26915092 

  12. 12. Mauersberger S Schunck W-H Müller H-H The induction of cytochrome P-450 in Lodderomyces elongisporus Zeitschrift fur Allgemeine Mikrobiologie 1981 21 313 321 10.1002/jobm.3630210407 7293242 

  13. 13. Seghezzi W Identification and characterization of additional members of the cytochrome P450 multigene family CYP52 of Candida tropicalis DNA Cell Biol. 1992 11 767 780 10.1089/dna.1992.11.767 1457045 

  14. 14. Green KD Turner MK Woodley JM Candida cloacae oxidation of long-chain fatty acids to dioic acids Enzyme Microb. Technol. 2000 27 205 211 10.1016/S0141-0229(00)00217-9 10899544 

  15. 15. Vieira ÉD da Graça Stupiello Andrietta M Andrietta SR Yeast biomass production: a new approach in glucose-limited feeding strategy Braz. J. Microbiol. 2013 44 551 558 10.1590/S1517-83822013000200035 24294254 

  16. 16. Liu S Li C Fang X Cao Z Optimal pH control strategy for high-level production of long-chain α,ω-dicarboxylic acid by Candida tropicalis Enzyme Microb. Technol. 2004 34 73 77 10.1016/j.enzmictec.2003.09.001 

  17. 17. Funk I Rimmel N Schorsch C Sieber V Schmid J Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis J. Ind. Microbiol. Biotechnol. 2017 44 1491 1502 10.1007/s10295-017-1972-6 

  18. 18. Kohlwein SD Veenhuis M van der Klei IJ Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store ‘em up or burn ‘em down Genetics 2013 193 1 50 10.1534/genetics.112.143362 23275493 

  19. 19. Dey P Maiti MK Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production J. Appl. Microbiol. 2013 114 1357 1368 10.1111/jam.12133 23311514 

  20. 20. Lamers D Selection of oleaginous yeasts for fatty acid production BMC Biotechnol. 2016 16 1 10 10.1186/s12896-016-0276-7 26729248 

  21. 21. Connerth M Oleate inhibits steryl ester synthesis and causes liposensitivity in yeast J. Biol. Chem. 2010 285 26832 26841 10.1074/jbc.M110.122085 20571028 

  22. 22. Beopoulos A Chardot T Nicaud JM Yarrowia lipolytica : A model and a tool to understand the mechanisms implicated in lipid accumulation Biochimie 2009 91 692 696 10.1016/j.biochi.2009.02.004 19248816 

  23. 23. Papanikolaou S Aggelis G Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats Curr. Microbiol. 2003 46 398 402 10.1007/s00284-002-3907-2 12732944 

  24. 24. Craft DL Madduri KM Eshoo M Wilson CR Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to α,ω-dicarboxylic acids Appl. Environ. Microbiol. 2003 69 5983 5991 10.1128/AEM.69.10.5983-5991.2003 14532053 

  25. 25. Eschenfeldt WH Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis Appl. Environ. Microbiol. 2003 69 5992 5999 10.1128/AEM.69.10.5992-5999.2003 14532054 

  26. 26. Froissard M Lipids containing medium-chain fatty acids are specific to post-whole genome duplication Saccharomycotina yeasts BMC Evol. Biol. 2015 15 1 16 10.1186/s12862-015-0369-2 25608511 

  27. 27. Dulermo R Gamboa-Melendez H Ledesma-Amaro R Thevenieau F Nicaud JM Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica Biochim. Biophys. Acta. 2015 1851 1202 1217 10.1016/j.bbalip.2015.04.004 25887939 

  28. 28. Rühmann B Schmid J Sieber V High throughput exopolysaccharide screening platform: from strain cultivation to monosaccharide composition and carbohydrate fingerprinting in one day Carbohydr. Polym. 2015 122 212 220 10.1016/j.carbpol.2014.12.021 25817661 

  29. 29. Schwarz D Integrated biorefinery concept for grass silage using a combination of adapted pulping methods for advanced saccharification and extraction of lignin Bioresour. Technol. 2016 216 462 470 10.1016/j.biortech.2016.05.092 27262721 

  30. 30. Vandesompele J Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes Genome Biol. 2002 3 RESEARCH0034 1 12 10.1186/gb-2002-3-7-research0034 12184808 

  31. 31. Bligh EG Dyer WJ A rapid method of total lipid extraction and purification Can. J. of Biochem. Phys. 1959 37 911 917 10.1139/y59-099 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로