$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy 원문보기

Scientific reports, v.7, 2017년, pp.15715 -   

Tahara, Masaki (Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8503 Japan) ,  Okano, Nao (Graduate Student, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8503 Japan) ,  Inamura, Tomonari (Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8503 Japan) ,  Hosoda, Hideki (Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8503 Japan)

Abstract AI-Helper 아이콘AI-Helper

β-Ti alloys have attracted considerable attention as new biomedical shape memory alloys. Given the critical importance of the plastic deformation in the martensite phase for the shape memory effect and superelasticity, we investigated here the plastic deformation behaviour of a single crystal o...

참고문헌 (62)

  1. 1. Niinomi M Mechanical properties of biomedical titanium alloys Materials Science and Engineering: A 1998 243 231 236 10.1016/S0921-5093(97)00806-X 

  2. 2. Kuroda D Niinomi M Morinaga M Kato Y Yashiro T Design and mechanical properties of new β type titanium alloys for implant materials Materials Science and Engineering: A 1998 243 244 249 10.1016/S0921-5093(97)00808-3 

  3. 3. Miyazaki S Kim HY Hosoda H Development and characterization of Ni-free Ti-base shape memory and superelastic alloys Mater. Sci. Eng., A 2006 438–440 18 24 10.1016/j.msea.2006.02.054 

  4. 4. Kim HY Miyazaki SM Transformation and Superelastic Properties of Ti-Nb Base Alloys Mater. Trans. 2015 56 625 634 10.2320/matertrans.M2014454 

  5. 5. Es-Souni M Es-Souni M Fischer-Brandies H Assessing the biocompatibility of NiTi shape memory alloys used for medical applications Anal. Bioanal. Chem. 2005 381 557 567 10.1007/s00216-004-2888-3 15660223 

  6. 6. Haider W Munroe N Pulletikurthi C Gill PKS Amruthaluri S A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys J. Mater. Eng. Perform. 2009 18 760 764 10.1007/s11665-009-9435-5 19956791 

  7. 7. Kim JI Kim HY Inamura T Hosoda H Miyazaki S Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys Materials Science and Engineering: A 2005 403 334 339 10.1016/j.msea.2005.05.050 

  8. 8. Kim JI Kim HY Hosoda H Miyazaki S Shape Memory Behavior of Ti-22Nb-(0.5-2.0)O(at%) Biomedical Alloys Mater. Trans. 2005 46 852 857 10.2320/matertrans.46.852 

  9. 9. Kim HY Ikehara Y Kim JI Hosoda H Miyazaki S Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys Acta Mater. 2006 54 2419 2429 10.1016/j.actamat.2006.01.019 

  10. 10. Furuhara T Annaka S Tomio Y Maki T Superelasticity in Ti–10V–2Fe–3Al alloys with nitrogen addition Mater. Sci. Eng., A 2006 438-440 825 829 10.1016/j.msea.2006.02.084 

  11. 11. Kim HY Effect of Ta addition on shape memory behavior of Ti–22Nb alloy Materials Science and Engineering: A 2006 417 120 128 10.1016/j.msea.2005.10.065 

  12. 12. Tahara M Kim HY Hosoda H Miyazaki S Shape Memory effect and Cyclic Deformation Behavior OF Ti–Nb–N Alloys Functional Materials Letters 2009 2 79 82 10.1142/S1793604709000600 

  13. 13. Tahara M Kim HY Inamura T Hosoda H Miyazaki S Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys Mater. Trans. 2009 50 2726 2730 10.2320/matertrans.MA200907 

  14. 14. Tahara M Kim HY Hosoda H Nam TH Miyazaki S Effect of nitrogen addition and annealing temperature on superelastic properties of Ti–Nb–Zr–Ta alloys Materials Science and Engineering: A 2010 527 6844 6852 10.1016/j.msea.2010.07.052 

  15. 15. Shinohara Y Tahara M Inamura T Miyazaki S Hosoda H Effect of annealing temperature on microstructure and superelastic properties of Ti-Au-Cr-Zr alloy Mater. Trans. 2015 56 404 409 10.2320/matertrans.M2014439 

  16. 16. Endoh K Tahara M Inamura T Hosoda H Effect of Sn and Zr addition on the martensitic transformation behavior of Ti-Mo shape memory alloys J. Alloys Compd. 2017 695 76 82 10.1016/j.jallcom.2016.10.108 

  17. 17. Inamura T Effect of {0 0 1} texture on superelastic strain of Ti–Nb–Al biomedical shape memory alloys Mater. Sci. Eng., A 2006 438-440 865 869 10.1016/j.msea.2006.02.092 

  18. 18. Kim HY Kim JI Inamura T Hosoda H Miyazaki S Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti-(26-28) at.% Nb alloys Mater. Sci. Eng., A 2006 438-440 839 843 10.1016/j.msea.2006.02.136 

  19. 19. Kim HY Texture and shape memory behavior of Ti–22Nb–6Ta alloy Acta Mater. 2006 54 423 433 10.1016/j.actamat.2005.09.014 

  20. 20. Inamura T Composition dependent crystallography of α″-martensite in Ti–Nb-based β-titanium alloy Philos. Mag. 2007 87 3325 10.1080/14786430601003874 

  21. 21. Chai YW Kim HY Hosoda H Miyazaki S Interfacial defects in Ti–Nb shape memory alloys Acta Mater. 2008 56 3088 3097 10.1016/j.actamat.2008.02.045 

  22. 22. Chai YW Kim HY Hosoda H Miyazaki S Self-accommodation in Ti–Nb shape memory alloys Acta Mater. 2009 57 4054 4064 10.1016/j.actamat.2009.04.051 

  23. 23. Inamura T Hosoda H Young Kim H Miyazaki S Antiphase boundary-like stacking fault in α″-martensite of disordered crystal structure in β-titanium shape memory alloy Philos. Mag. 2010 90 3475 3498 10.1080/14786435.2010.489889 

  24. 24. Al-Zain Y Anomalous temperature dependence of the superelastic behavior of Ti–Nb–Mo alloys Acta Mater. 2011 59 1464 1473 10.1016/j.actamat.2010.11.008 

  25. 25. Tahara M Kim HY Inamura T Hosoda H Miyazaki S Lattice modulation and superelasticity in oxygen-added beta-Ti alloys Acta Mater. 2011 59 6208 6218 10.1016/j.actamat.2011.06.015 

  26. 26. Inamura T Hosoda H Miyazaki S Incompatibility and preferred morphology in the self-accommodation microstructure of β-titanium shape memory alloy Philos. Mag. 2013 93 618 634 10.1080/14786435.2012.725955 

  27. 27. Tahara M Kim HY Inamura T Hosoda H Miyazaki S Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy J. Alloys Compd. 2013 577 S404 S407 10.1016/j.jallcom.2011.12.113 

  28. 28. Tahara M Heating-induced martensitic transformation and time-dependent shape memory behavior of Ti–Nb–O alloy Acta Mater. 2014 80 317 326 10.1016/j.actamat.2014.07.012 

  29. 29. Inamura T Ii M Tahara M Hosoda H Formation process of the incompatible martensite microstructure in a beta-titanium shape memory alloy Acta Mater. 2017 124 351 359 10.1016/j.actamat.2016.11.024 

  30. 30. Tahara M Kim HY Hosoda H Miyazaki S Cyclic deformation behavior of a Ti–26 at.% Nb alloy Acta Mater. 2009 57 2461 2469 10.1016/j.actamat.2009.01.037 

  31. 31. Ma J Karaman I Maier HJ Chumlyakov YI Superelastic cycling and room temperature recovery of Ti74Nb26 shape memory alloy Acta Mater. 2010 58 2216 2224 10.1016/j.actamat.2009.12.009 

  32. 32. Ma J Karaman I Chumlyakov YI Superelastic memory effect in Ti74Nb26 shape memory alloy Scripta Mater. 2010 63 265 268 10.1016/j.scriptamat.2010.03.037 

  33. 33. Hanada S Izumi O Deformation of metastable betaTi-15Mo-5Zr alloy single crystals Metall. Trans. A 1980 11 1447 1452 10.1007/BF02653501 

  34. 34. Hanada S Takemura A Izumi O The Mode of Plastic Deformation of β Ti-V Alloys Transactions of the Japan Institute of Metals 1982 23 507 517 10.2320/matertrans1960.23.507 

  35. 35. Hanada S Ozeki M Izumi O Deformation characteristics in Β phase Ti-Nb alloys Metall. Trans. A 1985 16 789 795 10.1007/BF02814829 

  36. 36. Lee S-H Hagihara K Nakano T Microstructural and Orientation Dependence of the Plastic Deformation Behavior in β-type Ti-15Mo-5Zr-3Al Alloy Single Crystals Metallurgical and Materials Transactions A 2012 43 1588 1597 10.1007/s11661-011-0986-3 

  37. 37. Hagihara K Nakano T Maki H Umakoshi Y Niinomi M Isotropic plasticity of β-type Ti-29Nb-13Ta-4.6Zr alloy single crystals for the development of single crystalline β-Ti implants Sci. Rep. 2016 6 29779 10.1038/srep29779 27417073 

  38. 38. Kamimura Y Basic Deformation Mechanism of Bcc Titanium-Based Alloy of Gum Metal Mater. Trans. 2016 57 1526 1534 10.2320/matertrans.M2016191 

  39. 39. Otsuka, K. & Wayman, C. M. Shape memory materials (Cambridge Univ Pr, 1999). 

  40. 40. Chowdhury P Sehitoglu H A revisit to atomistic rationale for slip in shape memory alloys Prog. Mater Sci. 2017 85 1 42 10.1016/j.pmatsci.2016.10.002 

  41. 41. Tobe, H. Deformation mechanism and cold rolling textures in β-Ti alloys Ph. D thesis, University of Tsukuba (2012). 

  42. 42. Tobe H Kim HY Inamura T Hosoda H Miyazaki S Origin of {3 3 2} twinning in metastable β-Ti alloys Acta Mater. 2014 64 345 355 10.1016/j.actamat.2013.10.048 

  43. 43. Bertrand E Castany P Yang Y Menou E Gloriant T Deformation twinning in the full-α″ martensitic Ti–25Ta–20Nb shape memory alloy Acta Mater. 2016 105 94 103 10.1016/j.actamat.2015.12.001 

  44. 44. Castany P Yang Y Bertrand E Gloriant T Reversion of a Parent {130}{310}α“ Martensitic Twinning System at the Origin of {332}{113}β Twins Observed in Metastable β Titanium Alloys Phys. Rev. Lett. 2016 117 245501 10.1103/PhysRevLett.117.245501 28009177 

  45. 45. Otsuka K Wayman CM Nakai K Sakamoto H Shimizu K Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys Acta Metall. 1976 24 207 226 10.1016/0001-6160(76)90071-7 

  46. 46. Otani N Funatsu Y Ichinose S Miyazaki S Otsuka K Orientation dependence of the deformation modes in a γ1′ martensite single crystal in Cu-Al-Ni alloy Scripta Metallurgica 1983 17 745 750 10.1016/0036-9748(83)90486-6 

  47. 47. Ichinose S Funatsu Y Otsuka K Type II deformation twinning in γ1′ martensite in a Cu-Al-Ni alloy Acta Metall. 1985 33 1613 1620 10.1016/0001-6160(85)90155-5 

  48. 48. Ichikawa T Otani N Miyazaki S Otsuka K Unusual strain recovery in γ1′ martensite single variant of Cu-Al-Ni alloy Scripta Metallurgica 1989 23 1329 1334 10.1016/0036-9748(89)90054-9 

  49. 49. Al-Zain Y Kim HY Hosoda H Nam TH Miyazaki S Shape memory properties of Ti–Nb–Mo biomedical alloys Acta Mater. 2010 58 4212 4223 10.1016/j.actamat.2010.04.013 

  50. 50. Lieberman DS Wechsler MS Read TA Cubic to Orthorhombic Diffusionless Phase Change— Experimental and Theoretical Studies of AuCd J. Appl. Phys. 1955 26 473 484 10.1063/1.1722021 

  51. 51. Kato M Mori T Orientation of martensite formed in Fe-23Ni-5Cr crystals under uniaxial stress along [001] Acta Metall. 1977 25 951 956 10.1016/0001-6160(77)90183-3 

  52. 52. Mura, T. Micromechanics of defects in solids (Kluwer Academic Publisher, Dordrecht, 1987). 

  53. 53. Inamura T Fukui Y Hosoda H Wakashima K Miyazaki S Relationship between Texture and Macroscopic Transformation Strain in Severely Cold-Rolled Ti-Nb-Al Superelastic Alloy Mater. Trans. 2004 45 1083 1089 10.2320/matertrans.45.1083 

  54. 54. Inamura T Yamamoto Y Hosoda H Kim HY Miyazaki S Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti–Nb–Al shape memory alloy Acta Mater. 2010 58 2535 2544 10.1016/j.actamat.2009.12.040 

  55. 55. Wechsler MS Lieberman DS Read TA ON THE THEORY OF THE FORMATION OF MARTENSITE Transactions of the American Institute of Mining and Metallurgical Engineers 1953 197 1503 1515 

  56. 56. Mackenzie JK Bowles JS The crystallography of martensite transformations II Acta Metall. 1954 2 138 147 10.1016/0001-6160(54)90103-0 

  57. 57. Bowles JS Mackenzie JK The crystallography of martensite transformations I Acta Metall. 1954 2 129 137 10.1016/0001-6160(54)90102-9 

  58. 58. Christian JW Mahajan S Deformation twinning Prog. Mater Sci. 1995 39 1 157 10.1016/0079-6425(94)00007-7 

  59. 59. Otsuka K Ren X Physical metallurgy of Ti–Ni-based shape memory alloys Prog. Mater Sci. 2005 50 511 678 10.1016/j.pmatsci.2004.10.001 

  60. 60. Ojha A Sehitoglu H Slip Resistance of Ti-Based High-Temperature Shape Memory Alloys Shape Memory and Superelasticity 2016 2 50 61 10.1007/s40830-015-0050-z 

  61. 61. Greninger AB Troiano AR THE MECHANISM OF MARTENSITE FORMATION Transactions of the American Institute of Mining and Metallurgical Engineers 1949 185 590 598 

  62. 62. Duesbery MS Vitek V Plastic anisotropy in b.c.c. transition metals Acta Mater. 1998 46 1481 1492 10.1016/S1359-6454(97)00367-4 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로