$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens 원문보기

Scientific reports, v.7, 2017년, pp.16409 -   

Pérez-de-Luque, Alejandro (Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK) ,  Tille, Stefanie (Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK) ,  Johnson, Irene (Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK) ,  Pascual-Pardo, David (Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK) ,  Ton, Jurriaan (Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK) ,  Cameron, Duncan D. (Department of Animal and Plant Sciences, Alfred Denny Building, Plant Production and Protection (P3) Centre, University of Sheffield, Wester)

Abstract AI-Helper 아이콘AI-Helper

Belowground interactions between plant roots, mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR) can improve plant health via enhanced nutrient acquisition and priming of the plant immune system. Two wheat cultivars differing in their ability to form mycorrhiza were (co)inoculated wit...

참고문헌 (57)

  1. 1. Walters DR Ratsep J Havis ND Controlling crop diseases using induced resistance: challenges for the future J. Exp. Bot. 2013 64 1263 1280 10.1093/jxb/ert026 23386685 

  2. 2. Ahmad S Gordon-Weeks R Pickett J Ton J Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation Mol. Plant Pathol. 2010 11 817 827 21029325 

  3. 3. Cordier C Pozo MJ Barea JM Gianinazzi S Gianinazzi-Pearson V Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced by an arbuscular mycorrhizal fungus Mol. Plant Microbe In. 1998 11 1017 1028 10.1094/MPMI.1998.11.10.1017 

  4. 4. Jetiyanon K Kloepper JW Mixtures of plant growth promoting rhizobacteria for induction of systemic resistance against multiple plant diseases Biol. Control 2002 24 285 291 10.1016/S1049-9644(02)00022-1 

  5. 5. Lioussanne L The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens Span. J. Agric. Res. 2010 8 S1 51 61 10.5424/sjar/201008S1-5301 

  6. 6. D’Alessandro M Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions Plant Cell Environ. 2013 37 813 826 10.1111/pce.12220 24127750 

  7. 7. Cameron D Arbuscular mycorrhizal fungi as (agro)ecosystem engineers Plant Soil 2010 333 1 5 10.1007/s11104-010-0361-y 

  8. 8. Berendsen RL Pieterse CMJ Bakker PAHM The rhizosphere microbiome and plant health Trends Plant Sci. 2012 17 478 486 10.1016/j.tplants.2012.04.001 22564542 

  9. 9. Berta G Maize development and grain quality are differentially affected by mycorrhizal fungi and growth-promoting psedomonad in the field Mycorrhiza 2014 24 161 170 10.1007/s00572-013-0523-x 23995918 

  10. 10. Cameron DD Neal AL van Wees SCM Ton J Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci. 2013 18 539 545 10.1016/j.tplants.2013.06.004 23871659 

  11. 11. Azcon R Ocampo JA Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars New Phytol. 1981 87 677 685 10.1111/j.1469-8137.1981.tb01702.x 

  12. 12. Aira M Gómez-Brandón M Lazcano C Baath E Domínguez J Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities Soil Biol. Biochem. 2010 42 2276 2281 10.1016/j.soilbio.2010.08.029 

  13. 13. An GH How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize ( Zea mays ) germplasms Plant Soil 2010 327 441 453 10.1007/s11104-009-0073-3 

  14. 14. Akiyama K Matsuzaki K Hayashi H Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi Nature 2005 435 824 827 10.1038/nature03608 15944706 

  15. 15. Neal AL Ahmad S Gordon-Weeks R Ton J Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere PLOS One 2012 7 e35498 10.1371/journal.pone.0035498 22545111 

  16. 16. Marschner P Crowley DE Higashi RM Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper ( Capsicum annuum L.) Plant Soil 1997 189 11 20 10.1023/A:1004266907442 

  17. 17. Laparre J Combining metabolomics and gene expression analysis reveals that propionyl- and butyryl- carnitines are involved in late stages of arbuscular mycorrhizal symbiosis Mol. Plant 2014 7 554 566 10.1093/mp/sst136 24121293 

  18. 18. Linderman RG Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect Phytopathol. 1988 78 366 371 

  19. 19. Gupta Sood S Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants FEMS Microbiol. Ecol. 2003 45 219 227 10.1016/S0168-6496(03)00155-7 19719591 

  20. 20. Song YY Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn ( Zea mays L.) to sheath blight Mycorrhiza 2011 21 721 731 10.1007/s00572-011-0380-4 21484338 

  21. 21. Walker V Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum , Pseudomonas and Glomus consortium under field conditions Plant Soil 2012 356 151 163 10.1007/s11104-011-0960-2 

  22. 22. Pozo MJ Azcón-Aguilar C Unraveling mycorrhiza-induced resistance Curr. Opin. Plant Biol. 2007 10 393 398 10.1016/j.pbi.2007.05.004 17658291 

  23. 23. Besserer A Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria PLoS Biol. 2006 4 e226 10.1371/journal.pbio.0040226 16787107 

  24. 24. Gallou A Mosquera HPL Cranenbrouck S Suárez JP Declerck S Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans Physiol. Mol. Plant Pathol. 2011 76 20 26 10.1016/j.pmpp.2011.06.005 

  25. 25. Kloppholz S Kuhn H Requena N A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy Curr. Biol. 2011 21 1204 1209 10.1016/j.cub.2011.06.044 21757354 

  26. 26. Ton J Flors V Mauch-Mani B The multifaceted role of ABA in disease resistance Trends Plant Sci. 2009 14 310 317 10.1016/j.tplants.2009.03.006 19443266 

  27. 27. Van der Ent S Van Wees SCM Pieterse CMJ Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes Phytochemistry 2009 70 1581 1588 10.1016/j.phytochem.2009.06.009 19712950 

  28. 28. Trouvelot, A., Kough, J. L. & Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle in Physiological and genetical aspects of mycorrhizae (eds Gianinazzi-Pearson, V. & Gianinazzi, S.) 217–221 (INRA Press, 1986). 

  29. 29. Chaparro JM Sheflin AM Manter DK Vivanco JM Manipulating the soil microbiome to increase soil health and plant fertility Biol. Fert. Soils 2012 48 489 499 10.1007/s00374-012-0691-4 

  30. 30. Vessey JK Plant growth promoting rhizobacteria as biofertilizers Plant Soil 2003 255 571 586 10.1023/A:1026037216893 

  31. 31. Maherali H Is there an association between root architecture and mycorrhizal growth response? New Phytol. 2014 204 192 200 10.1111/nph.12927 25041241 

  32. 32. Bashan Y Dubrovsky JG Azospirillum spp. participation in dry matter partitioning in grasses at the whole plant level Biol. Fert. Soils 1996 23 435 440 10.1007/BF00335919 

  33. 33. Vacheron J Plant growth-promoting rhizobacteria and root system functioning Front. Plant Sci. 2013 4 356 10.3389/fpls.2013.00356 24062756 

  34. 34. Kamilova F Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria Mol. Plant Microbe In. 2006 193 250 256 10.1094/MPMI-19-0250 

  35. 35. Maillet F Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza Nature 2011 469 58 63 10.1038/nature09622 21209659 

  36. 36. Huang Z Haig T Wu H An M Pratley J Correlation between phytotoxicity on annual ryegrass ( Lolium rigidum ) and production dynamics of allelochemicals within root exudates of an allelopathic wheat J. Chem. Ecol. 2003 29 2263 2279 10.1023/A:1026222414059 14682511 

  37. 37. Teplitski M Robinson JB Bauer WD Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria Mol. Plant Microbe In. 2000 13 637 648 10.1094/MPMI.2000.13.6.637 

  38. 38. Vandeputte OM Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1 Appl. Environ. Microbiol. 2010 6 243 53 10.1128/AEM.01059-09 

  39. 39. Das K Katiyar V Goel R ‘P’ solubilization potential of plant growth promoting Pseudomonas mutants at low temperature Microbiol. Res. 2003 158 359 362 10.1078/0944-5013-00217 14717458 

  40. 40. Yoneyama K Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants New Phytol. 2008 179 484 494 10.1111/j.1469-8137.2008.02462.x 19086293 

  41. 41. Matilla MA Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation Env. Microbiol. Rep. 2010 2 381 388 10.1111/j.1758-2229.2009.00091.x 23766110 

  42. 42. Neal AL Ton J Systemic defense priming by Pseudomonas putida KT2440 in maize depends on benzoxazinoid exudation from the roots Plant Signal. Behav. 2013 8 1 e22655 10.4161/psb.22655 23221758 

  43. 43. Planchamp C Glauser G Mauch-Mani B Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants Front. Plant Sci. 2015 5 719 10.3389/fpls.2014.00719 25628626 

  44. 44. Fritz M Jakobsen I Lyngkjær MF Thordal-Christensen H Pons-Kühnemann J Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani Mycorrhiza 2006 16 413 419 10.1007/s00572-006-0051-z 16614816 

  45. 45. Jung SC Martinez-Medina A Lopez-Raez JA Pozo MJ Mycorrhiza-induced resistance and priming of plant defenses J. Chem. Ecol. 2012 38 651 664 10.1007/s10886-012-0134-6 22623151 

  46. 46. Van Wees SCM Van der Ent S Pieterse CMJ Plant immune responses triggered by beneficial microbes Curr. Opin. Plant Biol. 2008 11 443 448 10.1016/j.pbi.2008.05.005 18585955 

  47. 47. Luna E Callose deposition: a multifaceted plant defense response Mol. Plant Microbe In. 2011 24 183 93 10.1094/MPMI-07-10-0149 

  48. 48. Ellinger D Voigt CA Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade Ann. Bot. 2014 114 1349 1358 10.1093/aob/mcu120 24984713 

  49. 49. Raaijmakers JM Leeman M van Oorschot MMP van der Sluis I Schipper B Dose-response relationships in biological control of fusarium wilt of radish by Pseudomonas spp Phytopathol. 1995 85 1075 1081 10.1094/Phyto-85-1075 

  50. 50. Thomma BP Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens Proc. Nat. Acad. Sci. USA 1998 95 15107 15111 10.1073/pnas.95.25.15107 9844023 

  51. 51. Ton J Van Pelt JA VanLoon LC Pieterse CMJ D ifferential effectiveness of SA-dependent and jasmonate- and ethylene-dependent induced resistance in Arabidopsis Mol. Plant MicrobeIn. 2002 15 27 34 10.1094/MPMI.2002.15.1.27 

  52. 52. Rahman TAE Oirdi ME Gonzalez-Lamothe R Bouarab K Necrotrophic pathogens use the salicylic acid signalling pathway to promote disease development in tomato Mol. Plant Microbe In. 2012 25 1584 1593 10.1094/MPMI-07-12-0187-R 

  53. 53. Gurney AL Slate J Press MC Scholes JD A novel form of resistance in rice to the angiosperm parasite Striga hermonthica New Phytol. 2006 169 199 208 10.1111/j.1469-8137.2005.01560.x 16390431 

  54. 54. Hewitt, E. J. Sand and water culture methods used in the study of plant nutrition. (Commonwealth Agricultural Bureaux, 1966). 

  55. 55. Kiers ET Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis Science 2011 333 880 882 10.1126/science.1208473 21836016 

  56. 56. Declerck S Strullu DG Plenchette C Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection Mycologia 1998 90 579 585 10.2307/3761216 

  57. 57. Dodd, J. C., Clapp, J. P. & Zhao, B. Mycorrhiza Manual prepared for the Workshop Arbuscular mycorrhizal fungi in plant production systems: detectikon, taxonomy, conservation and ecophysiology. https://www2.dijon.inra.fr/mychintec/Protocole/protoframe.html (2001). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로