$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A gravitational-wave standard siren measurement of the Hubble constant 원문보기

Nature, v.551 no.7678 = no.7678, 2017년, pp.85 - 88  

Abstract AI-Helper 아이콘AI-Helper

On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent ...

참고문헌 (50)

  1. The LIGO Scientific Collaboration. Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015) 

  2. Class. Quantum Gravity F Acernese 32 024001 2015 10.1088/0264-9381/32/2/024001 Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015) 

  3. Phys. Rev. Lett. BP Abbott 119 161101 2017 10.1103/PhysRevLett.119.161101 Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017) 

  4. The Astrophysical Journal B. P. Abbott 848 2 L13 2017 10.3847/2041-8213/aa920c Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa920c (2017) 

  5. The Astrophysical Journal A. Goldstein 848 2 L14 2017 10.3847/2041-8213/aa8f41 Goldstein, A. et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa8f41 (2017) 

  6. The Astrophysical Journal V. Savchenko 848 2 L15 2017 10.3847/2041-8213/aa8f94 Savchenko, V. et al. INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational event GW170817. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa8f94 (2017) 

  7. The Astrophysical Journal B. P. Abbott 848 2 L12 2017 10.3847/2041-8213/aa91c9 Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa91c9 (2017) 

  8. Science D. A. Coulter 358 6370 1556 2017 10.1126/science.aap9811 Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science http://doi.org/10.1126/science.aap9811 (2017) 

  9. The Astrophysical Journal M. Soares-Santos 848 2 L16 2017 10.3847/2041-8213/aa9059 Soares-Santos, M. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa9059 (2017) 

  10. The Astrophysical Journal Stefano Valenti 848 2 L24 2017 10.3847/2041-8213/aa8edf Valenti, S. et al. The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa8edf (2017) 

  11. Nature Iair Arcavi 551 7678 64 2017 10.1038/nature24291 Arcavi, I. et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature http://doi.org/10.1038/nature24291 (2017) 

  12. The Astrophysical Journal N. R. Tanvir 848 2 L27 2017 10.3847/2041-8213/aa90b6 Tanvir, N. et al. The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa90b6 (2017) 

  13. Lipunov, V. et al. MASTER optical detection of the first LIGO/Virgo NSs merging GW170817/ G298048. Astrophys. J. (in the press) 

  14. Nature BF Schutz 323 310 1986 10.1038/323310a0 Schutz, B. F. Determining the Hubble constant from gravitational wave observations. Nature 323, 310-311 (1986) 

  15. Astrophys. J. DE Holz 629 15 2005 10.1086/431341 Holz, D. E. & Hughes, S. A. Using gravitational-wave standard sirens. Astrophys. J. 629, 15-22 (2005) 

  16. Phys. Rev. D N Dalal 74 063006 2006 10.1103/PhysRevD.74.063006 Dalal, N., Holz, D. E., Hughes, S. A. & Jain, B. Short GRB and binary black hole standard sirens as a probe of dark energy. Phys. Rev. D 74, 063006 (2006) 

  17. Astrophys. J. S Nissanke 725 496 2010 10.1088/0004-637X/725/1/496 Nissanke, S., Holz, D. E., Hughes, S. A., Dalal, N. & Sievers, J. L. Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys. J. 725, 496-514 (2010) 

  18. Nissanke, S. et al. Determining the Hubble constant from gravitational wave observations of merging compact binaries. Preprint at https://arxiv.org/abs/1307.2638 (2013) 

  19. Astrophys. J. WL Freedman 553 47 2001 10.1086/320638 Freedman, W. L. et al. Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553, 47-72 (2001) 

  20. Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016) 

  21. Astrophys. J. AG Riess 826 56 2016 10.3847/0004-637X/826/1/56 Riess, A. G. et al. A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016) 

  22. Phys. Rev. D W Del Pozzo 86 043011 2012 10.1103/PhysRevD.86.043011 Del Pozzo, W. Inference of the cosmological parameters from gravitational waves: application to second generation interferometers. Phys. Rev. D 86, 043011 (2012) 

  23. Phys. Rev. X BP Abbott 6 041015 2016 Abbott, B. P. et al. Binary black hole mergers in the first Advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016) 

  24. New J. Phys. C Messenger 15 053027 2013 10.1088/1367-2630/15/5/053027 Messenger, C. & Veitch, J. Avoiding selection bias in gravitational wave astronomy. New J. Phys. 15, 053027 (2013) 

  25. Astrophys. J. S Sakai 529 698 2000 10.1086/308305 Sakai, S. et al. The Hubble Space Telescope key project on the extragalactic distance scale. XXIV. The calibration of Tully-Fisher relations and the value of the Hubble constant. Astrophys. J. 529, 698-722 (2000) 

  26. Astrophys. J. Suppl. Ser. G Hinshaw 180 225 2009 10.1088/0067-0049/180/2/225 Hinshaw, G. et al. Five-year Wilkinson microwave anisotropy probe observations: data processing, sky maps, and basic results. Astrophys. J. Suppl. Ser. 180, 225-245 (2009) 

  27. Astrophys. J. AC Crook 655 790 2007 10.1086/510201 Crook, A. C. et al. Groups of galaxies in the Two Micron All Sky Redshift Survey. Astrophys. J. 655, 790-813 (2007); erratum 685, 1320-1323 (2008) 

  28. Mon. Not. R. Astron. Soc. CM Springob 445 2677 2014 10.1093/mnras/stu1743 Springob, C. M. et al. The 6dF Galaxy Survey: peculiar velocity field and cosmography. Mon. Not. R. Astron. Soc. 445, 2677-2697 (2014) 

  29. Mon. Not. R. Astron. Soc. J Carrick 450 317 2015 10.1093/mnras/stv547 Carrick, J., Turnbull, S. J., Lavaux, G. & Hudson, M. J. Cosmological parameters from the comparison of peculiar velocities with predictions from the 2M++ density field. Mon. Not. R. Astron. Soc. 450, 317-332 (2015) 

  30. Phys. Rev. D E Aubourg 92 123516 2015 10.1103/PhysRevD.92.123516 Aubourg, E. et al. Cosmological implications of baryon acoustic oscillation measurements. Phys. Rev. D 92, 123516 (2015) 

  31. Mon. Not. R. Astron. Soc. V Bonvin 465 4914 2017 10.1093/mnras/stw3006 Bonvin, V. et al. H0LiCOW - V. New COSMOGRAIL time delays of HE 0435?1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model. Mon. Not. R. Astron. Soc. 465, 4914-4930 (2017) 

  32. Henning, J. W. et al. Measurements of the temperature and E-mode polarization of the CMB from 500 square degrees of SPTpol data. Preprint at https://arxiv.org/abs/1707.09353 (2017) 

  33. Astrophys. J. J-S Huang 496 31 1998 10.1086/305373 Huang, J.-S., Cowie, L. L. & Luppino, G. A. Morphological classification of the local I- and K-band galaxy sample. Astrophys. J. 496, 31-38 (1998) 

  34. Astron. J. JS Bloom 123 1111 2002 10.1086/338893 Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111-1148 (2002) 

  35. Astron. J. MF Skrutskie 131 1163 2006 10.1086/498708 Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163-1183 (2006) 

  36. Mon. Not. R. Astron. Soc. DH Jones 399 683 2009 10.1111/j.1365-2966.2009.15338.x Jones, D. H. et al. The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures. Mon. Not. R. Astron. Soc. 399, 683-698 (2009) 

  37. J. Supp. Ser. JP Huchra 199 26 2012 10.1088/0067-0049/199/2/26 Huchra, J. P. et al. The 2MASS Redshift Survey-description and data release. Astrophys. J. Supp. Ser. 199, 26 (2012) 

  38. Phys. Rev. D J Veitch 91 042003 2015 10.1103/PhysRevD.91.042003 Veitch, J. et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys. Rev. D 91, 042003 (2015) 

  39. Phys. Rev. Lett. M Hannam 113 151101 2014 10.1103/PhysRevLett.113.151101 Hannam, M. et al. Simple model of complete precessing black-hole-binary gravitational waveforms. Phys. Rev. Lett. 113, 151101 (2014) 

  40. Class. Quantum Gravity NJ Cornish 32 135012 2015 10.1088/0264-9381/32/13/135012 Cornish, N. J. & Littenberg, T. B. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches. Class. Quantum Gravity 32, 135012 (2015) 

  41. Phys. Rev. D A Buonanno 59 084006 1999 10.1103/PhysRevD.59.084006 Buonanno, A. & Damour, T. Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999) 

  42. Living Rev. Relativ. L Blanchet 17 2 2014 10.12942/lrr-2014-2 Blanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014) 

  43. Phys. Rev. D T Hinderer 78 064028 2008 10.1103/PhysRevD.78.064028 Hinderer, T. & Flanagan, E. E. Two-timescale analysis of extreme mass ratio inspirals in Kerr spacetime: orbital motion. Phys. Rev. D 78, 064028 (2008) 

  44. Phys. Rev. D J Vines 83 084051 2011 10.1103/PhysRevD.83.084051 Vines, J., Flanagan, E. E. & Hinderer, T. Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals. Phys. Rev. D 83, 084051 (2011) 

  45. AIP Conf. Proc. TJ Loredo 735 195 2004 10.1063/1.1835214 Loredo, T. J. Accounting for source uncertainties in analyses of astronomical survey data. AIP Conf. Proc. 735, 195-206 (2004) 

  46. Mandel, I., Farr, W. M. & Gair, J. Extracting Distribution Parameters From Multiple Uncertain Observations With Selection Biases. Report No. P1600187-v1, https://dcc.ligo.org/LIGO-P1600187/public (LIGO, 2016) 

  47. Astrophys. J. BD Metzger 746 48 2012 10.1088/0004-637X/746/1/48 Metzger, B. D. & Berger, E. What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys. J. 746, 48 (2012) 

  48. Astrophys. J. Suppl. Ser. BP Abbott 227 14 2016 10.3847/0067-0049/227/2/14 Abbott, B. P. et al. Supplement: “The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914” (2016, ApJL, 833, L1). Astrophys. J. Suppl. Ser. 227, 14 (2016) 

  49. Dalya, G., Frei, Z., Galgoczi, G., Raffai, P. & de Souza, R. S. GLADE catalog (Dalya+, 2016). VizieR Online Data Catalog http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=VII/275 (2016) 

  50. Phys. Rep. MA Strauss 261 271 1995 10.1016/0370-1573(95)00013-7 Strauss, M. A. & Willick, J. A. The density and peculiar velocity fields of nearby galaxies. Phys. Rep. 261, 271-431 (1995) 

LOADING...

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로