$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

ROS-induced cleavage of NHLRC2 by caspase-8 leads to apoptotic cell death in the HCT116 human colon cancer cell line 원문보기

Cell death & disease, v.8 no.12, 2017년, pp.3218 -   

Nishi, Kensuke (Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180 Japan) ,  Iwaihara, Yuri (Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180 Japan) ,  Tsunoda, Toshiyuki (Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180 Japan) ,  Doi, Keiko (Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180 Japan) ,  Sakata, Toshifumi (Department of Otorhinolaryngology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180 Japan) ,  Shirasawa, Senji (Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180 Japan) ,  Ishikura, Shuhei (Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180 Japan)

Abstract AI-Helper 아이콘AI-Helper

Excess production of reactive oxygen species (ROS) is known to cause apoptotic cell death. However, the molecular mechanisms whereby ROS induce apoptosis remain elusive. Here we show that the NHL-repeat-containing protein 2 (NHLRC2) thioredoxin-like domain protein is cleaved by caspase-8 in ROS-indu...

참고문헌 (51)

  1. 1. Panieri E Santoro MM ROS homeostasis and metabolism: a dangerous liason in cancer cells Cell Death Dis. 2016 7 e2253 10.1038/cddis.2016.105 27277675 

  2. 2. Valko M Free radicals and antioxidants in normal physiological functions and human disease Int. J. Biochem. Cell. Biol. 2007 39 44 84 10.1016/j.biocel.2006.07.001 16978905 

  3. 3. Circu ML Aw TY Reactive oxygen species, cellular redox systems, and apoptosis Free Radic. Biol. Med. 2010 48 749 762 10.1016/j.freeradbiomed.2009.12.022 20045723 

  4. 4. Galadari S Rahman A Pallichankandy S Thayyullathil F Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017 104 144 164 10.1016/j.freeradbiomed.2017.01.004 28088622 

  5. 5. Degterev A Boyce M Yuan J A decade of caspases Oncogene 2003 22 8543 8567 10.1038/sj.onc.1207107 14634618 

  6. 6. Shalini S Dorstyn L Dawar S Kumar S Old, new and emerging functions of caspases Cell Death. Differ. 2015 22 526 539 10.1038/cdd.2014.216 25526085 

  7. 7. Fischer U Janicke RU Schulze-Osthoff K Many cuts to ruin: a comprehensive update of caspase substrates Cell Death. Differ. 2003 10 76 100 10.1038/sj.cdd.4401160 12655297 

  8. 8. McIlwain DR Berger T Mak TW Caspase functions in cell death and disease Cold Spring Harb. Perspect. Biol. 2013 5 a008656 10.1101/cshperspect.a008656 23545416 

  9. 9. Li H Zhu H Xu CJ Yuan J Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis Cell 1998 94 491 501 10.1016/S0092-8674(00)81590-1 9727492 

  10. 10. Lin Y Devin A Rodriguez Y Liu ZG Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis Genes Dev. 1999 13 2514 2526 10.1101/gad.13.19.2514 10521396 

  11. 11. Treude F Caspase-8-mediated PAR-4 cleavage is required for TNFalpha-induced apoptosis Oncotarget 2014 5 2988 2998 10.18632/oncotarget.1634 24931006 

  12. 12. Shiozaki EN Chai J Shi Y Oligomerization and activation of caspase-9, induced by Apaf-1 CARD Proc Natl Acad Sci USA 2002 99 4197 4202 10.1073/pnas.072544399 11904389 

  13. 13. Alonso MM New benzo(b)thiophenesulphonamide 1,1-dioxide derivatives induce a reactive oxygen species-mediated process of apoptosis in tumour cells Oncogene 2003 22 3759 3769 10.1038/sj.onc.1206435 12802283 

  14. 14. Denning TL Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cells Free Radic. Biol. Med. 2002 33 1641 1650 10.1016/S0891-5849(02)01141-3 12488132 

  15. 15. Inoue A Molecular mechanism of diclofenac-induced apoptosis of promyelocytic leukemia: dependency on reactive oxygen species, Akt, Bid, cytochrome and caspase pathway Free Radic. Biol. Med. 2004 37 1290 1299 10.1016/j.freeradbiomed.2004.07.003 15451068 

  16. 16. Katoh I Tomimori Y Ikawa Y Kurata S Dimerization and processing of procaspase-9 by redox stress in mitochondria J. Biol. Chem. 2004 279 15515 15523 10.1074/jbc.M311819200 14747474 

  17. 17. Brandes N Schmitt S Jakob U Thiol-based redox switches in eukaryotic proteins Antioxid. Redox Signal. 2009 11 997 1014 10.1089/ars.2008.2285 18999917 

  18. 18. Klomsiri C Karplus PA Poole LB Cysteine-based redox switches in enzymes Antioxid. Redox Signal. 2011 14 1065 1077 10.1089/ars.2010.3376 20799881 

  19. 19. Collet JF Messens J Structure, function, and mechanism of thioredoxin proteins Antioxid. Redox Signal. 2010 13 1205 1216 10.1089/ars.2010.3114 20136512 

  20. 20. Martin JL Thioredoxin--a fold for all reasons Structure 1995 3 245 250 10.1016/S0969-2126(01)00154-X 7788290 

  21. 21. Nordberg J Arner ES Reactive oxygen species, antioxidants, and the mammalian thioredoxin system Free Radic. Biol. Med. 2001 31 1287 1312 10.1016/S0891-5849(01)00724-9 11728801 

  22. 22. Fomenko DE Gladyshev VN Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes Antioxid. Redox Signal. 2012 16 193 201 10.1089/ars.2011.3980 21902454 

  23. 23. Good MC Greenstein AE Young TA Ng HL Alber T Sensor domain of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknD, forms a highly symmetric beta propeller J. Mol. Biol. 2004 339 459 469 10.1016/j.jmb.2004.03.063 15136047 

  24. 24. Slack FJ Ruvkun G A novel repeat domain that is often associated with RING finger and B-box motifs Trends Biochem. Sci. 1998 23 474 475 10.1016/S0968-0004(98)01299-7 9868369 

  25. 25. Polkoff KM Lotti SN Beever JE Wheeler MB 206 CRISPR/Cas9-mediated repair of the NHLRC2 locusin beef cattle Reprod. Fertil. Dev. 2016 29 212 10.1071/RDv29n1Ab206 

  26. 26. Chen L Ginsenoside compound K sensitizes human colon cancer cells to TRAIL-induced apoptosis via autophagy-dependent and -independent DR5 upregulation Cell Death Dis. 2016 7 e2334 10.1038/cddis.2016.234 27512955 

  27. 27. Huang F Selenite induces redox-dependent Bax activation and apoptosis in colorectal cancer cells Free Radic. Biol. Med. 2009 46 1186 1196 10.1016/j.freeradbiomed.2009.01.026 19439215 

  28. 28. Kuo YF Flavokawain B, a novel chalcone from Alpinia pricei Hayata with potent apoptotic activity: involvement of ROS and GADD153 upstream of mitochondria-dependent apoptosis in HCT116 cells Free Radic. Biol. Med. 2010 49 214 226 10.1016/j.freeradbiomed.2010.04.005 20398749 

  29. 29. Luo H PTEN-regulated AKT/FoxO3a/Bim signaling contributes to reactive oxygen species-mediated apoptosis in selenite-treated colorectal cancer cells Cell Death Dis. 2013 4 e481 10.1038/cddis.2013.3 23392169 

  30. 30. Kucera O The effect of tert-butyl hydroperoxide-induced oxidative stress on lean and steatotic rat hepatocytes in vitro Oxid. Med. Cell Longev. 2014 2014 752506 10.1155/2014/752506 24847414 

  31. 31. Lv H Daphnetin-mediated Nrf2 antioxidant signaling pathways ameliorate tert-butyl hydroperoxide (t-BHP)-induced mitochondrial dysfunction and cell death Free Radic. Biol. Med. 2017 106 38 52 10.1016/j.freeradbiomed.2017.02.016 28188924 

  32. 32. Zhao W Tert-butyl hydroperoxide (t-BHP) induced apoptosis and necroptosis in endothelial cells: Roles of NOX4 and mitochondrion Redox Biol. 2017 11 524 534 10.1016/j.redox.2016.12.036 28088644 

  33. 33. Druskovic M Suput D Milisav I Overexpression of caspase-9 triggers its activation and apoptosis in vitro Croat. Med. J. 2006 47 832 840 17167855 

  34. 34. Shikama Y U M Miyashita T Yamada M Comprehensive studies on subcellular localizations and cell death-inducing activities of eight GFP-tagged apoptosis-related caspases Exp. Cell. Res. 2001 264 315 325 10.1006/excr.2000.5153 11262188 

  35. 35. Yang P Caspase-8-mediated apoptosis in human RPE cells Invest. Ophthalmol. Vis. Sci. 2007 48 3341 3349 10.1167/iovs.06-1340 17591907 

  36. 36. Schembri L The HA tag is cleaved and loses immunoreactivity during apoptosis Nat. Methods 2007 4 107 108 10.1038/nmeth0207-107 17264856 

  37. 37. Robertson JD Enoksson M Suomela M Zhivotovsky B Orrenius S Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis J. Biol. Chem. 2002 277 29803 29809 10.1074/jbc.M204185200 12065594 

  38. 38. Robertson JD Gogvadze V Zhivotovsky B Orrenius S Distinct pathways for stimulation of cytochrome c release by etoposide J. Biol. Chem. 2000 275 32438 32443 10.1074/jbc.C000518200 10961984 

  39. 39. White JK Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes Cell 2013 154 452 464 10.1016/j.cell.2013.06.022 23870131 

  40. 40. Long J Pan G Ifeachor E Belshaw R Li X Discovery of novel biomarkers for alzheimer's disease from blood Dis. Markers 2016 2016 4250480 10.1155/2016/4250480 27418712 

  41. 41. Kecmanovic M Lafora disease: severe phenotype associated with homozygous deletion of the NHLRC1 gene J. Neurol. Sci. 2013 325 170 173 10.1016/j.jns.2012.12.006 23317923 

  42. 42. Roma-Mateo C Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy Free Radic. Biol. Med. 2015 88 30 41 10.1016/j.freeradbiomed.2015.01.034 25680286 

  43. 43. Loedige I The crystal structure of the NHL domain in complex with RNA reveals the molecular basis of Drosophila brain-tumor-mediated gene regulation Cell Rep. 2015 13 1206 1220 10.1016/j.celrep.2015.09.068 26527002 

  44. 44. Loedige I The NHL domain of BRAT is an RNA-binding domain that directly contacts the hunchback mRNA for regulation Genes Dev. 2014 28 749 764 10.1101/gad.236513.113 24696456 

  45. 45. Pelicano H Carney D Huang P ROS stress in cancer cells and therapeutic implications Drug Resist. Updat. 2004 7 97 110 10.1016/j.drup.2004.01.004 15158766 

  46. 46. Ishikura S The nuclear zinc finger protein Zfat maintains FoxO1 protein levels in peripheral T cells by regulating the activities of autophagy and the Akt signaling pathway J. Biol. Chem. 2016 291 15282 15291 10.1074/jbc.M116.723734 27226588 

  47. 47. Iwaihara Y Marked reduction in FoxO1 protein by its enhanced proteasomal degradation in Zfat-deficient peripheral T-cells Anticancer Res. 2015 35 4419 4423 26168481 

  48. 48. Ogawa M Zfat-deficiency results in a loss of CD3zeta phosphorylation with dysregulation of ERK and Egr activities leading to impaired positive selection PLoS ONE 2013 8 e76254 10.1371/journal.pone.0076254 24098453 

  49. 49. Ishikura S Molecular mechanisms of transcriptional regulation by the nuclear zinc-finger protein Zfat in T cells Biochim. Biophys. Acta 2016 1859 1398 1410 10.1016/j.bbagrm.2016.08.010 27591365 

  50. 50. Heckl D Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing Nat. Biotechnol. 2014 32 941 946 10.1038/nbt.2951 24952903 

  51. 51. Ishikura S Zfat-deficient CD4(+) CD8(+) double-positive thymocytes are susceptible to apoptosis with deregulated activation of p38 and JNK J. Cell. Biochem. 2015 116 149 157 10.1002/jcb.24954 25169027 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로