$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113 원문보기

Scientific reports, v.8, 2018년, pp.1979 -   

Muriel, Candela (Departamento de Biologí) ,  Arrebola, Eva (a, Universidad Autó) ,  Redondo-Nieto, Miguel (noma de Madrid, Darwin, 2, 28034 Madrid, Spain) ,  Martínez-Granero, Francisco (Departamento de Biologí) ,  Jalvo, Blanca (a, Universidad Autó) ,  Pfeilmeier, Sebastian (noma de Madrid, Darwin, 2, 28034 Madrid, Spain) ,  Blanco-Romero, Esther (Departamento de Biologí) ,  Baena, Irene (a, Universidad Autó) ,  Malone, Jacob G. (noma de Madrid, Darwin, 2, 28034 Madrid, Spain) ,  Rivilla, Rafael (Departamento de Biologí) ,  Martín, Marta (a, Universidad Autó)

Abstract AI-Helper 아이콘AI-Helper

The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolys...

참고문헌 (51)

  1. 1. Martinez-Granero F Redondo-Nieto M Vesga P Martin M Rivilla R AmrZ is a global transcriptional regulator implicated in iron uptake and environmental adaption in P. fluorescens F113 BMC Genomics 2014 15 237 10.1186/1471-2164-15-237 24670089 

  2. 2. Baynham PJ Wozniak DJ Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription Mol Microbiol 1996 22 97 108 10.1111/j.1365-2958.1996.tb02659.x 8899712 

  3. 3. Baynham PJ Ramsey DM Gvozdyev BV Cordonnier EM Wozniak DJ The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili J Bacteriol 2006 188 132 140 10.1128/JB.188.1.132-140.2006 16352829 

  4. 4. Tart AH Blanks MJ Wozniak DJ The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates J Bacteriol 2006 188 6483 6489 10.1128/JB.00636-06 16952938 

  5. 5. Martinez-Granero F The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens PLoS One 2012 7 e31765 10.1371/journal.pone.0031765 22363726 

  6. 6. Jones CJ ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa PLoS Pathog 2014 10 e1003984 10.1371/journal.ppat.1003984 24603766 

  7. 7. Allsopp LP RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa Proc Natl Acad Sci USA 2017 114 7707 7712 10.1073/pnas.1700286114 28673999 

  8. 8. Prada-Ramirez HA AmrZ regulates cellulose production in Pseudomonas syringae pv. tomato DC3000 Mol Microbiol 2016 99 960 977 10.1111/mmi.13278 26564578 

  9. 9. Tamayo R Pratt JT Camilli A Roles of cyclic diguanylate in the regulation of bacterial pathogenesis Annu Rev Microbiol 2007 61 131 148 10.1146/annurev.micro.61.080706.093426 17480182 

  10. 10. Simm R Morr M Kader A Nimtz M Romling U GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility Mol Microbiol 2004 53 1123 1134 10.1111/j.1365-2958.2004.04206.x 15306016 

  11. 11. Ausmees N Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity FEMS Microbiol Lett 2001 204 163 167 10.1111/j.1574-6968.2001.tb10880.x 11682196 

  12. 12. Tischler AD Camilli A Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation Mol Microbiol 2004 53 857 869 10.1111/j.1365-2958.2004.04155.x 15255898 

  13. 13. Fouhy Y Lucey JF Ryan RP Dow JM Cell-cell signaling, cyclic di-GMP turnover and regulation of virulence in Xanthomonas campestris Res Microbiol 2006 157 899 904 10.1016/j.resmic.2006.08.001 17008065 

  14. 14. Guvener ZT McCarter LL Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus J Bacteriol 2003 185 5431 5441 10.1128/JB.185.18.5431-5441.2003 12949095 

  15. 15. Phippen CW Formation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator FEBS Lett 2014 588 4631 4636 10.1016/j.febslet.2014.11.002 25447517 

  16. 16. Wei C A systematic analysis of the role of GGDEF-EAL domain proteins in virulence and motility in Xanthomonas oryzae pv. oryzicola Sci Rep 2016 6 23769 10.1038/srep23769 27053282 

  17. 17. Amikam D Galperin MY PilZ domain is part of the bacterial c-di-GMP binding protein Bioinformatics 2005 22 3 6 10.1093/bioinformatics/bti739 16249258 

  18. 18. Barahona E Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces Environ Microbiol 2010 12 3185 3195 10.1111/j.1462-2920.2010.02291.x 20626456 

  19. 19. Rybtke MT Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa Appl Environ Microbiol 2012 78 5060 5069 10.1128/AEM.00414-12 22582064 

  20. 20. Jones CJ Ryder CR Mann EE Wozniak DJ AmrZ modulates Pseudomonas aeruginosa biofilm architecture by directly repressing transcription of the psl operon J Bacteriol 2013 195 1637 1644 10.1128/JB.02190-12 23354748 

  21. 21. Martinez-Granero F Rivilla R Martin M Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability Appl Environ Microbiol 2006 72 3429 3434 10.1128/AEM.72.5.3429-3434.2006 16672487 

  22. 22. Capdevila S Martinez-Granero FM Sanchez-Contreras M Rivilla R Martin M Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization Microbiology 2004 150 3889 3897 10.1099/mic.0.27362-0 15528673 

  23. 23. Muriel C Jalvo B Redondo-Nieto M Rivilla R Martin M Chemotactic motility of Pseudomonas fluorescens F113 under aerobic and denitrification conditions PLoS One 2015 10 e0132242 10.1371/journal.pone.0132242 26161531 

  24. 24. Waligora EA AmrZ beta-sheet residues are essential for DNA binding and transcriptional control of Pseudomonas aeruginosa virulence genes J Bacteriol 2010 192 5390 5401 10.1128/JB.00711-10 20709902 

  25. 25. Reichhardt C Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification Anal. Bioanal. Chem. 2016 408 7709 7717 10.1007/s00216-016-9868-2 27580606 

  26. 26. Jones CJ Wozniak DJ Congo Red stain identifies matrix overproduction and is an indirect measurement for c-di-GMP in many species of bacteria Methods Mol Biol 2017 1657 147 156 10.1007/978-1-4939-7240-1_12 28889292 

  27. 27. Barahona E Pseudomonas fluorescens F113 can produce a second flagellar apparatus, which is important for plant root colonization Front Microbiol 2016 7 1471 10.3389/fmicb.2016.01471 27713729 

  28. 28. Martinez-Granero F Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas PLoS One 2014 9 e87608 10.1371/journal.pone.0087608 24504373 

  29. 29. Newell PD Yoshioka S Hvorecny KL Monds RD O’Toole GA Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0-1 J Bacteriol 2011 193 4685 4698 10.1128/JB.05483-11 21764921 

  30. 30. Roy AB Petrova OE Sauer K The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion J Bacteriol 2012 194 2904 2915 10.1128/JB.05346-11 22493016 

  31. 31. Scher FM Baker R Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens Phytopathology 1982 72 1567 1573 10.1094/Phyto-72-1567 

  32. 32. Schäfer A Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum Gene 1994 145 69 73 10.1016/0378-1119(94)90324-7 8045426 

  33. 33. Kirchner O Tauch A Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum J. Biotechnol 2003 104 287 299 10.1016/S0168-1656(03)00148-2 12948646 

  34. 34. de Lorenzo V Eltis L Kessler B Timmis KN Analysis of Pseudomonas gene products using lacI q /Ptrp-lac plasmids and transposons that confer conditional phenotypes Gene 1993 123 17 24 10.1016/0378-1119(93)90533-9 8380783 

  35. 35. Kovach ME Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes Gene 1995 166 175 176 10.1016/0378-1119(95)00584-1 8529885 

  36. 36. Navazo A Three independent signalling pathways repress motility in Pseudomonas fluorescens F113 Microbial biotechnology 2009 2 489 498 10.1111/j.1751-7915.2009.00103.x 21255280 

  37. 37. Peeters E Nelis HJ Coenye T Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates J Microbiol Methods 2008 72 157 165 10.1016/j.mimet.2007.11.010 18155789 

  38. 38. Little RH Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates pseudomonas infection and niche colonisation PLoS Genet 2016 12 e1005837 10.1371/journal.pgen.1005837 26845436 

  39. 39. King EO Ward MK Raney DE Two simple media for the demonstration of pyocyanin and fluorescin J Lab Clin Med 1954 44 301 307 13184240 

  40. 40. Pfeilmeier S Saur IM Rathjen JP Zipfel C Malone JG High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity Mol Plant Pathol 2016 17 521 531 10.1111/mpp.12297 26202381 

  41. 41. Lohse M RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics Nucleic Acids Res 2012 40 622 627 10.1093/nar/gks540 

  42. 42. Langmead B Salzberg SL Fast gapped-read alignment with Bowtie 2 Nat Methods 2012 9 357 359 10.1038/nmeth.1923 22388286 

  43. 43. Li H The sequence alignment/map format and SAMtools Bioinformatics 2009 25 2078 2079 10.1093/bioinformatics/btp352 19505943 

  44. 44. Anders S Pyl PT Huber W HTSeq—a Python framework to work with high-throughput sequencing data Bioinformatics 2015 31 166 169 10.1093/bioinformatics/btu638 25260700 

  45. 45. Mortazavi A Williams BA McCue K Schaeffer L Wold B Mapping and quantifying mammalian transcriptomes by RNA-Seq Nat Methods 2008 5 621 628 10.1038/nmeth.1226 18516045 

  46. 46. Love MI Huber W Anders S Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2 Genome Biol 2014 15 550 10.1186/s13059-014-0550-8 25516281 

  47. 47. Winsor GL Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database Nucleic Acids Res 2016 44 D646 653 10.1093/nar/gkv1227 26578582 

  48. 48. Malone JG YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa PLoS Pathog 2010 6 e1000804 10.1371/journal.ppat.1000804 20300602 

  49. 49. Paulsen IT Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5 Nat Biotechnol 2005 23 873 878 10.1038/nbt1110 15980861 

  50. 50. Hay ID Remminghorst U Rehm BH MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa Appl Environ Microbiol 2009 75 1110 1120 10.1128/AEM.02416-08 19088322 

  51. 51. Choy WK Zhou L Syn CK Zhang LH Swarup S MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas species J Bacteriol 2004 186 7221 7228 10.1128/JB.186.21.7221-7228.2004 15489433 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로