$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

논문 상세정보

Identification of the caveolae/raft-mediated endocytosis as the primary entry pathway for aquareovirus

Virology v.513 , 2018년, pp.195 - 207  
Abstract

Abstract Grass carp reovirus (GCRV), a member of the Aquareovirus genus in the Reoviridae family, is considered the most pathogenic aquareovirus. However, its productive viral entry pathways remain largely unclear. Using a combination of quantum dot (QD)-based live-virus tracking and biochemical assays, we found that extraction of cellular membrane cholesterol with methyl-β-cyclodextrin (MβCD) and nystatin strongly inhibited the internalization of GCRVs, and supplementation with cholesterol restored viral infection. In addition, the entry of the virus was restrained by genistein, an inhibitor known to block caveolar endocytosis. Subsequent real-time tracking experiments revealed that the QD-labeled GCRV particles were colocalized with caveolin-1, and transfection of cells with dominant-negative mutant (caveolin-1 Y14F) significantly reduced GCRV infection. In contrast, no effects on virus infection were detected when the clathrin-mediated endocytosis or the macropinocytosis inhibitors were used. Our results collectively suggest that aquareoviruses can use caveolae/raft-mediated endocytosis as the primary entry pathway to initiate productive infection. Highlights Quantum dot-labeled GCRV is used for viral particle imaging and tracking during cell entry. Entry of GCRV is membrane cholesterol dependent. Caveolin-1 is important for GCRV infection.

  

참고문헌 (71)

  1. 1. Exp. Cell Res. Aoki 253 629 1999 10.1006/excr.1999.4652 Tyrosine phosphorylation of caveolin-1 in the endothelium 
  2. 2. J. Gen. Virol. Attoui 83 1941 2002 10.1099/0022-1317-83-8-1941 Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae) 
  3. 3. Mol. Bol. Cell Boulant 24 1196 2013 10.1091/mbc.e12-12-0852 Similar uptake but different trafficking and escape routes of reovirus virions and infectious subvirion particles imaged in polarized Madin-Darby canine kidney cells 
  4. 4. Nat. Rev. Microbiol. Brandenburg 5 197 2007 10.1038/nrmicro1615 Virus trafficking-learning from single-virus tracking 
  5. 5. J. Mol. Biol. Cheng 382 213 2008 10.1016/j.jmb.2008.06.075 Subnanometer-resolution structures of the grass carp reovirus core and virion 
  6. 6. J. Virol. Daecke 79 1581 2005 10.1128/JVI.79.3.1581-1594.2005 Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry 
  7. 7. Annu. Rev. Biochem. Doherty 78 857 2009 10.1146/annurev.biochem.78.081307.110540 Mechanisms of endocytosis 
  8. 8. J. Virol. Du 88 12656 2014 10.1128/JVI.01815-14 Trafficking of bluetongue virus visualized by recovery of tetracysteine-tagged virion particles 
  9. 9. Arch. Virol. Fan 155 1755 2010 10.1007/s00705-010-0753-6 Characterization of the nonstructural protein NS80 of grass carp reovirus 
  10. 10. Biochem. Biophys. Res. Commun. Fang 274 762 2000 10.1006/bbrc.2000.3215 Sequence of genome segments 1, 2, and 3 of the grass carp reovirus (Genus Aquareovirus, family Reoviridae) 
  11. 11. Virol. Sin. Fang 4 315 1989 Growth characterization and high titre culture of GCHV 
  12. 12. Arch. Virol. Fang 153 675 2008 10.1007/s00705-008-0048-3 Characterization of infectious particles of grass carp reovirus by treatment with proteases 
  13. 13. Sci. China Ser. C Fang 48 593 2005 10.1360/062004-105 3D reconstruction and capsid protein characterization of grass carp reovirus 
  14. 14. J. Virol. Forzan 81 4819 2007 10.1128/JVI.02284-06 Bluetongue virus entry into cells 
  15. 15. J. Cell Sci. Frigault 122 753 2009 10.1242/jcs.033837 Live-cell microscopy-tips and tools 
  16. 16. PLoS One Gold 5 e11360 2010 10.1371/journal.pone.0011360 A clathrin independent macropinocytosis-like entry mechanism used by bluetongue virus-1 during infection of BHK cells 
  17. 17. J. Cell Biol. Grande-Garcia 177 683 2007 10.1083/jcb.200701006 Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases 
  18. 18. J. Virol. Greber 90 3802 2016 10.1128/JVI.02568-15 Virus and host mechanics support membrane penetration and cell entry 
  19. 19. Virus Res. Guo 171 129 2013 10.1016/j.virusres.2012.11.011 The NS16 protein of aquareovirus-C is a fusion-associated small transmembrane (FAST) protein, and its activity can be enhanced by the nonstructural protein NS26 
  20. 20. J. Cell Biol. Henley 141 85 1998 10.1083/jcb.141.1.85 Dynamin-mediated internalization of caveolae 
  21. 21. J. Cell Biol. Heuser 108 389 1989 10.1083/jcb.108.2.389 Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation 
  22. 22. Proc. Natl. Acad. Sci. USA Howarth 102 7583 2005 10.1073/pnas.0503125102 Targeting quantum dots to surface proteins in living cells with biotin ligase 
  23. 23. J. Biol. Chem. Huang 286 30780 2011 10.1074/jbc.M111.257154 Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein 
  24. 24. J. Virol. Imelli 78 3089 2004 10.1128/JVI.78.6.3089-3098.2004 Cholesterol is required for endocytosis and endosomal escape of adenovirus type 2 
  25. 25. Virology Jaafar 373 310 2008 10.1016/j.virol.2007.12.006 Complete characterisation of the American grass carp reovirus genome (genus aquareovirus: family Reoviridae) reveals an evolutionary link between aquareoviruses and coltiviruses 
  26. 26. ACS Nano Joo 5 3523 2011 10.1021/nn102651p Enhanced real-time monitoring of adeno-associated virus trafficking by virus-quantum dot conjugates 
  27. 27. Acta Hydrobiol. Sin. Ke 14 153 1990 Characteristics of a novel isolate of grass carp haemorrhagic virus 
  28. 28. J. Biol. Chem. Kovacs 279 35557 2004 10.1074/jbc.M405319200 Mechanism of blebbistatin inhibition of myosin II 
  29. 29. Nat. Methods Kukura 6 923 2009 10.1038/nmeth.1395 High-speed nanoscopic tracking of the position and orientation of a single virus 
  30. 30. J. Virol. Laniosz 82 6288 2008 10.1128/JVI.00569-08 Bovine papillomavirus type 1: from clathrin to caveolin 
  31. 31. J. Biol. Chem. Li 271 29182 1996 10.1074/jbc.271.46.29182 Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored Scaffolding protein, caveolin caveolin binding negatively regulates the auto-activation of Src tyrosine kinases 
  32. 32. Immuno Cell Biol. Lim 89 836 2011 10.1038/icb.2011.20 Macropinocytosis: an endocytic pathway for internalising large gulps 
  33. 33. Annu. Rev. Fish Dis. Lupiani 5 175 1995 10.1016/0959-8030(95)00006-2 Aquareoviruses 
  34. 34. J. Virol. Maginnis 82 3181 2008 10.1128/JVI.01612-07 NPXY motifs in the β1 integrin cytoplasmic tail are required for functional reovirus entry 
  35. 35. J. Virol. Mainou 85 3203 2011 10.1128/JVI.02056-10 Src kinase mediates productive endocytic sorting of reovirus during cell entry 
  36. 36. J. Virol. Mainou 86 8346 2012 10.1128/JVI.00100-12 Transport to late endosomes is required for efficient reovirus infection 
  37. 37. Cell Marsh 124 729 2006 10.1016/j.cell.2006.02.007 Virus entry: open sesame 
  38. 38. Nat. Mater. Medintz 4 435 2005 10.1038/nmat1390 Quantum dot bioconjugates for imaging, labelling and sensing 
  39. 39. Sci Mercer 320 531 2008 10.1126/science.1155164 Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells 
  40. 40. Nat. Cell Biol. Mercer 11 510 2009 10.1038/ncb0509-510 Virus entry by macropinocytosis 
  41. 41. J. Virol. Nason 74 6546 2000 10.1128/JVI.74.14.6546-6555.2000 Trypsin-induced structural transformation in aquareovirus 
  42. 42. PLoS One Nibert 8 e68607 2013 10.1371/journal.pone.0068607 Bioinformatics of recent aqua-and orthoreovirus isolates from fish: evolutionary gain or loss of FAST and fiber proteins and taxonomic implications 
  43. 43. Adv. Virol. Nicola 2013 10.1155/2013/469538 Virus entry by endocytosis 
  44. 44. J. Virol. O'Donnell 79 8506 2005 10.1128/JVI.79.13.8506-8518.2005 Analysis of foot-and-mouth disease virus internalization events in cultured cells 
  45. 45. World J. Gastroenterol. Pang 19 1736 2013 10.3748/wjg.v19.i11.1736 Endoplasmic reticulum stress sensitizes human esophageal cancer cell to radiation 
  46. 46. Curr. Opin. Cell Biol. Parton 8 542 1996 10.1016/S0955-0674(96)80033-0 Caveolae and caveolins 
  47. 47. J. Cell Biol. Parton 127 1199 1994 10.1083/jcb.127.5.1199 Regulated internalization of caveolae 
  48. 48. J. Biol. Chem. Patel 291 12408 2016 10.1074/jbc.M115.700856 Entry of bluetongue virus capsid requires the late endosome-specific lipid lysobisphosphatidic acid 
  49. 49. BBA-Mol. Cell Res. Pelkmans 1746 295 2005 Secrets of caveolae-and lipid raft-mediated endocytosis revealed by mammalian viruses 
  50. 50. Traffic Pelkmans 3 311 2002 10.1034/j.1600-0854.2002.30501.x Endocytosis via caveolae 
  51. 51. J. Gen. Virol. Rangel 80 2399 1999 10.1099/0022-1317-80-9-2399 Identification of grass carp haemorrhage virus as a new genogroup of aquareovirus 
  52. 52. Biochemistry Reed 26 824 1987 10.1021/bi00377a025 Interaction of cholera toxin with ganglioside GM1 receptors in supported lipid monolayers 
  53. 53. PLoS Pathog. Sanchez 8 e1002754 2012 10.1371/journal.ppat.1002754 African swine fever virus uses macropinocytosis to enter host cells 
  54. 54. J. Virol. Schulz 86 12665 2012 10.1128/JVI.01861-12 Reovirus uses multiple endocytic pathways for cell entry 
  55. 55. Structure Shaw 4 957 1996 10.1016/S0969-2126(96)00102-5 The structure of aquareovirus shows how the different geometries of the two layers of the capsid are reconciled to provide symmetrical interactions and stabilization 
  56. 56. J. Virol. Strong 70 612 1996 10.1128/JVI.70.1.612-616.1996 The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection 
  57. 57. Curr. Opin. Virol. Suomalainen 3 27 2013 10.1016/j.coviro.2012.12.004 Uncoating of non-enveloped viruses 
  58. 58. Trends Cell Biol. Swanson 5 424 1995 10.1016/S0962-8924(00)89101-1 Macropinocytosis 
  59. 59. PLoS Pathog. Veettil 6 e1001238 2010 10.1371/journal.ppat.1001238 Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus 
  60. 60. Virol. J. Wang 13 1 2016 10.1186/s12985-016-0485-7 Disruption of clathrin-dependent trafficking results in the failure of grass carp reovirus cellular entry 
  61. 61. J. Virol. Wang 72 3455 1998 10.1128/JVI.72.4.3455-3458.1998 Adenovirus internalization and infection require dynamin 
  62. 62. J. Virol. Wang 88 13047 2014 10.1128/JVI.01744-14 Entry of a novel marine DNA virus, Singapore grouper iridovirus, into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner 
  63. 63. Genome Biol. Williams 5 1 2004 10.1186/gb-2004-5-3-214 The caveolin proteins 
  64. 64. Traffic Yamauchi 17 569 2016 10.1111/tra.12387 Principles of virus uncoating: cues and the snooker ball 
  65. 65. PLoS One Yan 10 e0126127 2015 10.1371/journal.pone.0126127 Aquareovirus NS80 initiates efficient viral replication by retaining core proteins within replication-associated viral inclusion bodies 
  66. 66. J. Gen. Virol. Yan 96 1795 2015 10.1099/vir.0.000116 VP5 autocleavage is required for efficient infection by in vitro-recoated aquareovirus particles 
  67. 67. Virus Res. Ye 163 275 2012 10.1016/j.virusres.2011.10.014 Complete genomic sequence of a reovirus isolated from grass carp in China 
  68. 68. Virol. Sin. Zhang 32 163 2017 10.1007/s12250-016-3903-5 Characterization of viral entry and infection of quantum dotlabeled grass carp reovirus 
  69. 69. Biomaterials Zhang 34 7506 2013 10.1016/j.biomaterials.2013.06.030 Self-biotinylation and site-specific double labeling of baculovirus using quantum dots for single-virus in-situ tracking 
  70. 70. Cell Zhang 141 472 2010 10.1016/j.cell.2010.03.041 3.3 angstrom cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry 
  71. 71. Virology Zhang 343 25 2005 10.1016/j.virol.2005.08.002 Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction 

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

DOI 인용 스타일

"" 핵심어 질의응답