$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A novel adaptive fault detection methodology for complex system using deep belief networks and multiple models: A case study on cryogenic propellant loading system

Neurocomputing, v.275, 2018년, pp.2111 - 2125  

Ren, Hao (School of Automation, Chongqing University) ,  Chai, Yi (School of Automation, Chongqing University) ,  Qu, Jianfeng (School of Automation, Chongqing University) ,  Ye, Xin (Key Laboratory of Space Launching Site Reliability Technology) ,  Tang, Qiu (School of Automation, Chongqing University)

Abstract AI-Helper 아이콘AI-Helper

Abstract A novel methodology based deep belief networks and multiple models (DBNs-MMs) is presented to accomplish fault detection for complex systems. And firstly, historical datasets are collected and processed to train the DBNs, so that DBNs can be constructed to learn the nonlinear dynamic chara...

주제어

참고문헌 (46)

  1. Inf. Sci. Montmian 291 C 61 2015 10.1016/j.ins.2014.08.027 Multi-criteria improvement of complex systems 

  2. Neurocomputing Adil 171 C 1344 2016 10.1016/j.neucom.2015.07.099 Exponential discriminant analysis for fault diagnosis 

  3. Mech. Syst. Signal Process. Cai 80 31 2016 10.1016/j.ymssp.2016.04.019 A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks 

  4. Neurocomputing Baghernezhad 171 C 335 2016 10.1016/j.neucom.2015.06.050 Computationally intelligent strategies for robust fault detection, isolation, and identification of mobile robots 

  5. Inf. Sci. Mahmoud 235 6 80 2013 10.1016/j.ins.2012.01.031 Expectation maximization approach to data-based fault diagnostics 

  6. Neurocomputing Nozari 91 2 29 2012 10.1016/j.neucom.2012.02.014 Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques 

  7. Neurocomputing Razavi-Far 72 13-15 2939 2009 10.1016/j.neucom.2009.04.004 Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks 

  8. Neurocomputing Ma 72 13-15 2909 2009 10.1016/j.neucom.2008.06.033 Fault diagnosis of power electronic system based on fault gradation and neural network group 

  9. Neurocomputing Jing 167 C 636 2015 10.1016/j.neucom.2015.03.082 SVM and PCA based fault classification approaches for complicated industrial process 

  10. Neurocomputing Zin 168 C 983 2015 New algorithm for detection and fault classification on parallel transmission line using DWT and BPNN based on Clarke's transformation 

  11. Neurocomputing Pacheco 194 C 192 2016 10.1016/j.neucom.2016.02.028 A statistical comparison of neuroclassifers and feature selection methods for gearbox fault diagnosis under realistic conditions 

  12. Neurocomputing Sun 222 127 2017 10.1016/j.neucom.2016.10.018 Automatic multi-fault recognition in TFDS based on convolutional neural network 

  13. Neurocomputing Yang 190 117 2016 10.1016/j.neucom.2016.01.027 Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine 

  14. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans Daigle 40 5 917 2010 10.1109/TSMCA.2010.2052038 A comprehensive diagnosis methodology for complex hybrid systems: A case study on spacecraft power distribution systems 

  15. Inf. Sci. Yan 259 20 169 2014 A fault prediction method that uses improved case-based reasoning to continuously predict the status of a shaft furnace 

  16. IEEE Trans. Reliab. Zhang 64 3 910 2015 10.1109/TR.2015.2416332 Dynamic uncertain causality graph applied to dynamic fault diagnoses of large and complex systems 

  17. Mech. Syst. Signal Process. Gan 72-73 92 2016 10.1016/j.ymssp.2015.11.014 Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings 

  18. Measurement Sun 89 171 2016 10.1016/j.measurement.2016.04.007 A sparse auto-encoder-based deep neural network approach for induction motor faults classification 

  19. Mech. Syst. Signal Process. Jia 72-73 303 2016 10.1016/j.ymssp.2015.10.025 Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data 

  20. Math. Probl. Eng. Zheng 2016 1 2016 Fault localization analysis based on deep neural network 

  21. Reliab. Eng. Syst. Saf. Tamilselvan 115 7 124 2013 10.1016/j.ress.2013.02.022 Failure diagnosis using deep belief learning based health state classification 

  22. Expert Syst. Appl. Van Tung 41 9 4113 2014 10.1016/j.eswa.2013.12.026 An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks 

  23. J. Vibroeng. Chen 17 5 2379 2015 Multi-layer neural network with deep belief network for gearbox fault diagnosis 

  24. Appl. Intell. Cholette 37 1 60 2012 10.1007/s10489-011-0313-0 Monitoring of complex systems of interacting dynamic systems 

  25. Appl. Acoust. Huang 113 149 2016 10.1016/j.apacoust.2016.06.021 Sound quality prediction of vehicle interior noise using deep belief networks 

  26. Signal Process. Lu 130 C 377 2017 10.1016/j.sigpro.2016.07.028 Fault diagnosis of rotary machinery components using a stacked de-noising auto-encoder-based health state identification 

  27. Fu 31 29 2015 Fifteenth CIRP Conference on Modeling of Machining Operations Analysis of feature extracting ability for cutting state monitoring using deep belief networks 

  28. Pattern Recognit. Lett. Zhang 36 1 161 2014 10.1016/j.patrec.2013.10.009 Learning ensemble classifiers via restricted Boltzman machines 

  29. J. Vibroeng. Wang 17 3 1295 2015 Bearing fault diagnosis method based on Hilbert envelope spectrum and deep belief network 

  30. Inf. Sci. Sadough Vanini 259 3 234 2014 10.1016/j.ins.2013.05.032 Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach 

  31. IEEE Trans. Control Syst. Technol. Meskin 21 1 254 2013 10.1109/TCST.2011.2177981 A multiple model-based approach for fault diagnosis of jet engines 

  32. Neurocomputing Sina Tayarani-Bathaie 125 3 153 2014 10.1016/j.neucom.2012.06.050 Dynamic neural network-based fault diagnosis of gas turbine engines 

  33. Inf. Sci. Son 342 209 2016 10.1016/j.ins.2015.08.020 Intelligent rule-based sequence planning algorithm with fuzzy optimization for robot manipulation tasks in partially dynamic environments 

  34. J. Eng. Gas Turb. Power Sadough Vanini 136 9 2014 10.1115/1.4027215 Multiple-model sensor and components fault diagnosis in gas turbine engines using auto-associative neural networks 

  35. Int. J. Syst. Sci. Wang 45 3 487 2014 10.1080/00207721.2012.724100 Actuator fault estimation for a class of nonlinear descriptor systems 

  36. Mech. Syst. Signal Process. Wang 56-57 56 197 2015 10.1016/j.ymssp.2014.11.002 Fault diagnosis of reciprocating compressor valve with the method integrating acoustic emission signal and simulated valve motion 

  37. J. Process Control Arranz 22 1 280 2012 10.1016/j.jprocont.2011.07.011 New methods for interaction analysis of complex processes using weighted graphs 

  38. Inf. Sci. Xu 378 410 2017 10.1016/j.ins.2016.04.009 A novel approach to information fusion in multi-source datasets: a granular computing viewpoint 

  39. Inf. Sci. Zhang 364-365 146 2016 10.1016/j.ins.2016.01.039 A survey of randomized algorithms for training neural networks 

  40. J. Spacecr. Rockets Osipov 48 6 987 2011 10.2514/1.52587 Dynamical model of rocket propellant loading with liquid hydrogen 

  41. J. Propul. Power Manfletti 30 4 925 2014 10.2514/1.B34916 Laser Ignition of an experimental cryogenic reaction and control thruster: pre-ignition conditions 

  42. J. Thermophys. Heat Transfer Hafiychuk 29 3 533 2015 10.2514/1.T4481 Moving-boundary model of cryogenic fuel loading, I: two-phase flow in a pipe 

  43. J. Thermophys. Heat Transfer Hafiychuk 29 3 545 2015 10.2514/1.T4482 Moving-boundary model of cryogenic fuel loading, II: theory versus experiments 

  44. Inf. Sci. Baudrit 367-368 630 2016 10.1016/j.ins.2016.07.003 Unifying parameter learning and modeling complex systems with epistemic uncertainty using probability interval 

  45. Appl. Soft Comput. Sun 14 1 609 2014 10.1016/j.asoc.2013.10.010 BLDC motor speed control system fault diagnosis based on LRGF neural network and adaptive lifting scheme 

  46. Control Decis. Ren 32 8 1345 2017 Deep learning for fault diagnosis: the state of the art and challenge 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로