$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review

Progress in materials science, v.94, 2018년, pp.114 - 173  

Yu, Xianglong (State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University) ,  Zhou, Ji (State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University) ,  Liang, Haiyi (CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China) ,  Jiang, Zhengyi (School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong) ,  Wu, Lingling (State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Mechanical metamaterials are man-made structures with counterintuitive mechanical properties that originate in the geometry of their unit cell instead of the properties of each component. The typical mechanical metamaterials are generally associated with the four elastic constants, the You...

주제어

참고문헌 (391)

  1. Science Zheludev 328 582 2010 10.1126/science.1186756 The road ahead for metamaterials 

  2. Nat Photonics Soukoulis 5 523 2011 10.1038/nphoton.2011.154 Past achievements and future challenges in the development of three-dimensional photonic metamaterials 

  3. Phys Rev Lett Pendry 85 3966 2000 10.1103/PhysRevLett.85.3966 Negative refraction makes a perfect lens 

  4. Science Shelby 292 77 2001 10.1126/science.1058847 Experimental verification of a negative index of refraction 

  5. Science Smith 305 788 2004 10.1126/science.1096796 Metamaterials and negative refractive index 

  6. P R Soc Lond Bose 63 146 1898 10.1098/rspl.1898.0019 On the rotation of plane of polarisation of electric waves by a twisted structure 

  7. Phys-Usp+ Veselago 10 509 1968 The electrodynamics of substances with simulaneously negative values of ? and μ 

  8. Solymar 2009 Waves in metamaterials 

  9. Science Pendry 312 1780 2006 10.1126/science.1125907 Controlling electromagnetic fields 

  10. Cai 2010 Optical metamaterials: fundamentals and applications 

  11. Marques 2011 Metamaterials with negative parameters: theory, design and microwave applications 

  12. Science Wegener 342 939 2013 10.1126/science.1246545 Metamaterials beyond optics 

  13. Nature Maldovan 503 209 2013 10.1038/nature12608 Sound and heat revolutions in phononics 

  14. Chem Soc Rev Liu 40 2494 2011 10.1039/c0cs00184h Metamaterials: a new frontier of science and technology 

  15. Mater Today Zhao 12 60 2009 10.1016/S1369-7021(09)70318-9 Mie resonance-based dielectric metamaterials 

  16. Nat Mater Li 15 373 2016 10.1038/nmat4591 Mechanical metamaterials: smaller and stronger 

  17. Nat Rev Mater Pacchioni 2016 10.1038/natrevmats.2016.12 Mechanical metamaterials: the strength awakens 

  18. Phys Rev B Wang 88 014304 2013 10.1103/PhysRevB.88.014304 Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals 

  19. Nat Nanotechnol Lee 7 816 2012 10.1038/nnano.2012.211 A mechanical metamaterial made from a DNA hydrogel 

  20. Nat Commun Buckmann 5 4130 2014 10.1038/ncomms5130 An elasto-mechanical unfeelability cloak made of pentamode metamaterials 

  21. Nature Kuzyk 483 311 2012 10.1038/nature10889 DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response 

  22. Phys Rev Lett Brule 112 133901 2014 10.1103/PhysRevLett.112.133901 Experiments on seismic metamaterials: molding surface waves 

  23. Soft Matter Shim 9 8198 2013 10.1039/c3sm51148k Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials 

  24. Nano Lett Zhang 8 1192 2008 10.1021/nl0801531 One-step nanoscale assembly of complex structures via harnessing of an elastic instability 

  25. Phys Rev E Matsumoto 80 021604 2009 10.1103/PhysRevE.80.021604 Elastic-instability triggered pattern formation 

  26. Adv Mater Bertoldi 22 361 2010 10.1002/adma.200901956 Negative Poisson's ratio behavior induced by an elastic instability 

  27. Soft Matter Matsumoto 8 11038 2012 10.1039/c2sm26516h Patterns on a roll: a method of continuous feed nanoprinting 

  28. Science Lakes 235 1038 1987 10.1126/science.235.4792.1038 Foam structures with a negative Poisson's ratio 

  29. J Mech Phys Solids Milton 40 1105 1992 10.1016/0022-5096(92)90063-8 Composite materials with Poisson's ratios close to ?1 

  30. Int J Mech Sci Prall 39 305 1997 10.1016/S0020-7403(96)00025-2 Properties of a chiral honeycomb with a Poisson's ratio of ?1 

  31. Adv Mater Evans 12 617 2000 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3 Auxetic materials: functional materials and structures from lateral thinking! 

  32. Lim 2015 Auxetic materials and structures 

  33. Appl Phys Lett Kadic 100 191901 2012 10.1063/1.4709436 On the practicability of pentamode mechanical metamaterials 

  34. MRS Commun Christensen 5 453 2015 10.1557/mrc.2015.51 Vibrant times for mechanical metamaterials 

  35. Phys Status Solidi Gatt 2 236 2008 10.1002/pssr.200802101 Negative compressibility 

  36. Nature Lakes 410 565 2001 10.1038/35069035 Extreme damping in composite materials with negative-stiffness inclusions 

  37. Nat Mater Nicolaou 11 608 2012 10.1038/nmat3331 Mechanical metamaterials with negative compressibility transitions 

  38. Phys Rev Lett Wyart 101 215501 2008 10.1103/PhysRevLett.101.215501 Elasticity of floppy and stiff random networks 

  39. Phys Rev Lett Gomez 108 058001 2012 10.1103/PhysRevLett.108.058001 Shocks near jamming 

  40. Proc Natl Acad Sci Chen 111 13004 2014 10.1073/pnas.1405969111 Nonlinear conduction via solutions in a topological mechanical insulator 

  41. Nat Phys Paulose 11 153 2015 10.1038/nphys3185 Topological modes bound to dislocations in mechanical metamaterials 

  42. Proc Natl Acad Sci Nash 112 14495 2015 10.1073/pnas.1507413112 Topological mechanics of gyroscopic metamaterials 

  43. Nat Mater Bauer 15 438 2016 10.1038/nmat4561 Approaching theoretical strength in glassy carbon nanolattices 

  44. Rep Prog Phys Kadic 76 126501 2013 10.1088/0034-4885/76/12/126501 Metamaterials beyond electromagnetism 

  45. Phys Rev Appl Fleury 4 037001 2015 10.1103/PhysRevApplied.4.037001 Invisibility and cloaking: origins, present, and future perspectives 

  46. Sun 253 2016 Fundamentals and applications of nanophotonics Metamaterials 

  47. Appl Mech Rev dell'Isola 67 060804 2016 10.1115/1.4032206 Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response 

  48. Adv Mater Lee 24 4782 2012 10.1002/adma.201201644 Micro-/nanostructured mechanical metamaterials 

  49. Int J Eng Sci Vescovo 80 153 2014 10.1016/j.ijengsci.2014.02.022 Dynamic problems for metamaterials: review of existing models and ideas for further research 

  50. Adv Mater Lee 26 532 2014 10.1002/adma.201303456 25th anniversary article: ordered polymer structures for the engineering of photons and phonons 

  51. J Phys-Condens Mater Lee 21 175704 2009 10.1088/0953-8984/21/17/175704 Acoustic metamaterial with negative modulus 

  52. Baant 2010 Stability of structures: elastic, inelastic, fracture and damage theories 

  53. Timoshenkgo 1970 Theory of elasticity 

  54. J Phys Chem Ref Data Ledbetter 2 531 1973 10.1063/1.3253127 Elastic properties of metals and alloys, I. Iron, nickel, and iron-nickel alloys 

  55. Milton 2002 The theory of composites 

  56. Newnham 2004 Properties of materials: anisotropy, symmetry, structure 

  57. Eisenstadt 1971 Introduction to mechanical properties of materials 

  58. Atkin 2013 An introduction to the theory of elasticity 

  59. Fung 1965 Foundations of solid mechanics 

  60. Am J Phys Wang 72 40 2004 10.1119/1.1619140 Extreme stiffness systems due to negative stiffness elements 

  61. Sci Data de Jong 2 150009 2015 10.1038/sdata.2015.9 Charting the complete elastic properties of inorganic crystalline compounds 

  62. Nat Mater Greaves 10 823 2011 10.1038/nmat3134 Poisson's ratio and modern materials 

  63. J Eng Mater Technol Milton 117 483 1995 10.1115/1.2804743 Which elasticity tensors are realizable? 

  64. Int J Solids Struct Xie 51 4038 2014 10.1016/j.ijsolstr.2014.07.024 Designing orthotropic materials for negative or zero compressibility 

  65. Ashby 2011 Materials selection in mechanical design 

  66. Science Schaedler 334 962 2011 10.1126/science.1211649 Ultralight metallic microlattices 

  67. J Compos Mater Wang 39 1645 2005 10.1177/0021998305051112 Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson’s ratio 

  68. Phys Status Solidi B Xinchun 244 1008 2007 10.1002/pssb.200572719 Stability of elastic material with negative stiffness and negative Poisson's ratio 

  69. Phys Status Solidi B Lakes 245 545 2008 10.1002/pssb.200777708 Negative compressibility, negative Poisson's ratio, and stability 

  70. J Stat Phys Nicolaou 151 1162 2013 10.1007/s10955-013-0742-8 Longitudinal inverted compressibility in super-strained metamaterials 

  71. Phys Chem Chem Phys Cairns 17 20449 2015 10.1039/C5CP00442J Negative linear compressibility 

  72. Nat Mater Cairns 12 212 2013 10.1038/nmat3551 Giant negative linear compressibility in zinc dicyanoaurate 

  73. Proc Natl Acad Sci Goodwin 105 18708 2008 10.1073/pnas.0804789105 Large negative linear compressibility of Ag3[Co(CN)6] 

  74. Proc R Soc A Haghpanah 470 20130856 2014 10.1098/rspa.2013.0856 Buckling of regular, chiral and hierarchical honeycombs under a general macroscopic stress state 

  75. Science Zheng 344 1373 2014 10.1126/science.1252291 Ultralight, ultrastiff mechanical metamaterials 

  76. J Compos Mater Choi 29 113 1995 10.1177/002199839502900106 Nonlinear analysis of the Poisson's ratio of negative Poisson's ratio foams 

  77. Appl Phys Lett Celli 106 091905 2015 10.1063/1.4914011 Tunable directivity in metamaterials with reconfigurable cell symmetry 

  78. Science Silverberg 345 647 2014 10.1126/science.1252876 Using origami design principles to fold reprogrammable mechanical metamaterials 

  79. Smart Mater Struct Li 24 105031 2015 10.1088/0964-1726/24/10/105031 Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning 

  80. J Mech Phys Solids Bertoldi 56 2642 2008 10.1016/j.jmps.2008.03.006 Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures 

  81. Phys Rev Lett Mullin 99 084301 2007 10.1103/PhysRevLett.99.084301 Pattern transformation triggered by deformation 

  82. Adv Funct Mater Shan 24 4935 2014 10.1002/adfm.201400665 Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves 

  83. J Mech Phys Solids Audoly 56 2401 2008 10.1016/j.jmps.2008.03.003 Buckling of a stiff film bound to a compliant substrate-Part I: formulation, linear stability of cylindrical patterns, secondary bifurcations 

  84. Proc R Soc A Fleck 466 2495 2010 10.1098/rspa.2010.0215 Micro-architectured materials: past, present and future 

  85. Acta Mater Neelakantan 66 326 2014 10.1016/j.actamat.2013.11.020 Characterization and deformation response of orthotropic fibre networks with auxetic out-of-plane behaviour 

  86. Gibson 1997 Cellular solids: structure and properties 

  87. Nature Lakes 361 511 1993 10.1038/361511a0 Materials with structural hierarchy 

  88. Acta Mater Queheillalt 53 303 2005 10.1016/j.actamat.2004.09.024 Cellular metal lattices with hollow trusses 

  89. Acta Mater Torrents 60 3511 2012 10.1016/j.actamat.2012.03.007 Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale 

  90. Cundy 1961 Mathematical models 

  91. Lockwood 1978 Geometric symmetry 

  92. Frederickson 2003 Dissections: plane and fancy 

  93. J Mater Res Hyun 17 137 2002 10.1557/JMR.2002.0021 Optimal and manufacturable two-dimensional, Kagome-like cellular solids 

  94. J Mech Behav Biomed Mater Hedayati 53 272 2016 10.1016/j.jmbbm.2015.07.013 Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell 

  95. J Biomed Mater Res Hutmacher 55 203 2001 10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7 Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling 

  96. Biomaterials Zein 23 1169 2002 10.1016/S0142-9612(01)00232-0 Fused deposition modeling of novel scaffold architectures for tissue engineering applications 

  97. J Mech Phys Solids Deshpande 49 1747 2001 10.1016/S0022-5096(01)00010-2 Effective properties of the octet-truss lattice material 

  98. J Non-Cryst Solids Ma 285 216 2001 10.1016/S0022-3093(01)00456-2 Computer simulation of mechanical structure-property relationship of aerogels 

  99. Phys Status Solidi B Shen 251 1515 2014 10.1002/pssb.201451304 Simple cubic three-dimensional auxetic metamaterials 

  100. Adv Mater Maldovan 19 3809 2007 10.1002/adma.200700811 Sub-micrometer scale periodic porous cellular structures: microframes prepared by holographic interference lithography 

  101. Nano Lett Lee 10 2592 2010 10.1021/nl1012773 Enhanced energy dissipation in periodic epoxy nanoframes 

  102. Adv Funct Mater Wang 19 1343 2009 10.1002/adfm.200801483 Plastic dissipation mechanisms in periodic microframe-structured polymers 

  103. Adv Mater Buckmann 24 2710 2012 10.1002/adma.201200584 Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography 

  104. Prog Mater Sci Evans 46 309 2001 10.1016/S0079-6425(00)00016-5 The topological design of multifunctional cellular metals 

  105. Ashby 2000 Metal foams: a design guide 

  106. Science Meza 345 1322 2014 10.1126/science.1255908 Strong, lightweight, and recoverable three-dimensional ceramic nanolattices 

  107. NGM Bell 14 6 1903 The tetrahedral principle in kite structure 

  108. APL Mater Maloney 1 022106 2013 10.1063/1.4818168 Microlattices as architected thin films: analysis of mechanical properties and high strain elastic recovery 

  109. Nat Commun Qiu 3 1241 2012 10.1038/ncomms2251 Biomimetic superelastic graphene-based cellular monoliths 

  110. Appl Phys Lett Worsley 94 073115 2009 10.1063/1.3086293 Mechanically robust and electrically conductive carbon nanotube foams 

  111. Nat Commun Davami 6 10019 2015 10.1038/ncomms10019 Ultralight shape-recovering plate mechanical metamaterials 

  112. Proc Natl Acad Sci Meza 112 11502 2015 10.1073/pnas.1509120112 Resilient 3D hierarchical architected metamaterials 

  113. Acta Mater Deshpande 49 1035 2001 10.1016/S1359-6454(00)00379-7 Foam topology: bending versus stretching dominated architectures 

  114. Proc R Soc A Gurtner 470 20130611 2014 10.1098/rspa.2013.0611 Stiffest elastic networks 

  115. Proc R Soc Lond A Norris 470 20140522 2014 10.1098/rspa.2014.0522 Mechanics of elastic networks 

  116. Nat Commun Zhu 6 6962 2015 10.1038/ncomms7962 Highly compressible 3D periodic graphene aerogel microlattices 

  117. Adv Mater Mecklenburg 24 3486 2012 10.1002/adma.201200491 Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance 

  118. Carbon Jacobsen 49 1025 2011 10.1016/j.carbon.2010.10.059 Vitreous carbon micro-lattice structures 

  119. Mater Des Xu 93 443 2016 10.1016/j.matdes.2016.01.007 Design of lattice structures with controlled anisotropy 

  120. J Mech Phys Solids Cabras 91 56 2016 10.1016/j.jmps.2016.02.010 A class of auxetic three-dimensional lattices 

  121. Mater Des Nguyen 95 490 2016 10.1016/j.matdes.2016.01.126 Optimal design of “Shellular”, a micro-architectured material with ultralow density 

  122. Acta Mater Lee 103 595 2016 10.1016/j.actamat.2015.10.040 Mechanical analyses of “Shellular”, an ultralow-density material 

  123. Adv Mater Han 27 5506 2015 10.1002/adma.201501546 A new type of low density material: shellular 

  124. Hyde 1996 The language of shape 

  125. Sci Rep Lee 6 20312 2016 10.1038/srep20312 Controlled unusual stiffness of mechanical metamaterials 

  126. Macromolecules Wohlgemuth 34 6083 2001 10.1021/ma0019499 Triply periodic bicontinuous cubic microdomain morphologies by symmetries 

  127. Schoen AH. Infinite periodic minimal surfaces without self-intersections. NASA technical report, TN D-5541, Washington DC; 1970. 

  128. Nat Mater Miskin 12 326 2013 10.1038/nmat3543 Adapting granular materials through artificial evolution 

  129. J Mater Res Salari-Sharif 29 1755 2014 10.1557/jmr.2014.226 Energy dissipation mechanisms in hollow metallic microlattices 

  130. J Mech Behav Biomed Mater Khanoki 22 65 2013 10.1016/j.jmbbm.2013.03.002 Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem 

  131. Mech Mater Liu 77 1 2014 10.1016/j.mechmat.2014.06.008 Dynamic energy absorption characteristics of hollow microlattice structures 

  132. ACS Nano Zou 4 7293 2010 10.1021/nn102246a Ultralight multiwalled carbon nanotube aerogel 

  133. J Appl Mech Montemayor 82 071012 2015 10.1115/1.4030361 Mechanical response of hollow metallic nanolattices: combining structural and material size effects 

  134. J Am Ceram Soc Valdevit 94 15 2011 10.1111/j.1551-2916.2011.04599.x Protocols for the optimal design of multi-functional cellular structures: from hypersonics to micro-architected materials 

  135. Phys Rev Lett Kang 112 098701 2014 10.1103/PhysRevLett.112.098701 Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures 

  136. Meeussen AS, Paulose J, Vitelli V. Topological design of geared metamaterials; 2016. arXiv 1602:08769. 

  137. Nat Mater Shan 7 947 2008 10.1038/nmat2295 Ultrahigh stress and strain in hierarchically structured hollow nanoparticles 

  138. Phys Status Solidi B Grima 245 511 2008 10.1002/pssb.200777704 On the properties of auxetic meta-tetrachiral structures 

  139. Phys Lett A Wojciechowski 137 60 1989 10.1016/0375-9601(89)90971-7 Two-dimensional isotropic system with a negative Poisson ratio 

  140. Phys Status Solidi B Gatt 250 2012 2013 10.1002/pssb.201384246 A realistic generic model for anti-tetrachiral systems 

  141. Compos Sci Technol Alderson 70 1042 2010 10.1016/j.compscitech.2009.07.009 Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading 

  142. J Mech Phys Solids Spadoni 60 156 2012 10.1016/j.jmps.2011.09.012 Elasto-static micropolar behavior of a chiral auxetic lattice 

  143. Compos Sci Technol Lorato 70 1057 2010 10.1016/j.compscitech.2009.07.008 The transverse elastic properties of chiral honeycombs 

  144. Int J Solids Struct Chen 50 996 2013 10.1016/j.ijsolstr.2012.12.004 Elasticity of anti-tetrachiral anisotropic lattices 

  145. J Mater Res Sigmund 13 1038 1998 10.1557/JMR.1998.0145 On the design of 1-3 piezocomposites using topology optimization 

  146. Theor Appl Mech Lett Mousanezhad 2016 10.1016/j.taml.2016.02.004 Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach 

  147. Phys Status Solidi B Pozniak 251 367 2014 10.1002/pssb.201384256 Poisson's ratio of rectangular anti-chiral structures with size dispersion of circular nodes 

  148. Compos Sci Technol Miller 70 1049 2010 10.1016/j.compscitech.2009.10.022 Flatwise buckling optimization of hexachiral and tetrachiral honeycombs 

  149. Int J Solids Struct Bacigalupo 83 126 2016 10.1016/j.ijsolstr.2016.01.005 Simplified modelling of chiral lattice materials with local resonators 

  150. Wave Motion Spadoni 46 435 2009 10.1016/j.wavemoti.2009.04.002 Phononic properties of hexagonal chiral lattices 

  151. J Sound Vib Abdeljaber 369 50 2016 10.1016/j.jsv.2015.11.048 Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms 

  152. Smart Mater Struct Rossiter 23 045007 2014 10.1088/0964-1726/23/4/045007 Shape memory polymer hexachiral auxetic structures with tunable stiffness 

  153. Compos Part B Bettini 41 133 2010 10.1016/j.compositesb.2009.10.005 Composite chiral structures for morphing airfoils: numerical analyses and development of a manufacturing process 

  154. Prog Mater Sci Zhang 74 332 2015 10.1016/j.pmatsci.2015.05.001 Bioinspired engineering of honeycomb structure-using nature to inspire human innovation 

  155. Phys World Lang 20 30 2007 10.1088/2058-7058/20/2/31 The science of origami 

  156. Thin Wall Struct Song 54 65 2012 10.1016/j.tws.2012.02.007 Axial crushing of thin-walled structures with origami patterns 

  157. Proc Natl Acad Sci Schenk 110 3276 2013 10.1073/pnas.1217998110 Geometry of miura-folded metamaterials 

  158. Phys Rev Lett Wei 110 215501 2013 10.1103/PhysRevLett.110.215501 Geometric mechanics of periodic pleated origami 

  159. Phys Rev Lett Waitukaitis 114 055503 2015 10.1103/PhysRevLett.114.055503 Origami multistability: from single vertices to metasheets 

  160. Sci Rep Lv 4 5979 2014 10.1038/srep05979 Origami based mechanical metamaterials 

  161. Smart Mater Struct Hanna 23 094009 2014 10.1088/0964-1726/23/9/094009 Waterbomb base: a symmetric single-vertex bistable origami mechanism 

  162. Demaine 2007 Geometric folding algorithms 

  163. Lang 2011 Origami design secrets: mathematical methods for an ancient art 

  164. Smart Mater Struct Peraza-Hernandez 23 094001 2014 10.1088/0964-1726/23/9/094001 Origami-inspired active structures: a synthesis and review 

  165. J Mech Des Bowen 135 111008 2013 10.1115/1.4025379 A classification of action origami as systems of spherical mechanisms 

  166. Nat Mater Silverberg 14 389 2015 10.1038/nmat4232 Origami structures with a critical transition to bistability arising from hidden degrees of freedom 

  167. Shafer 2001 Origami to astonish and amuse 

  168. J Aircraft Miura 12 437 1975 10.2514/3.44468 New structural form of sandwich core 

  169. Miura 1 1980 Proceedings of 31st congress international astronautical federation Method of packaging and deployment of large membranes in space 

  170. J Spacecraft Rockets Papa 45 10 2008 10.2514/1.18285 Systematically creased thin-film membrane structures 

  171. Science Kim 335 1201 2012 10.1126/science.1215309 Designing responsive buckled surfaces by halftone gel lithography 

  172. Adv Healthc Mater Jamal 2 1142 2013 10.1002/adhm.201200458 Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers 

  173. Science Mahadevan 307 1740 2005 10.1126/science.1105169 Self-organized origami 

  174. Proc Natl Acad Sci Amar 110 10525 2013 10.1073/pnas.1217391110 Anisotropic growth shapes intestinal tissues during embryogenesis 

  175. Science Shyer 342 212 2013 10.1126/science.1238842 Villification: how the gut gets its villi 

  176. Phys Rev Lett Yasuda 114 185502 2015 10.1103/PhysRevLett.114.185502 Reentrant origami-based metamaterials with negative Poisson's ratio and bistability 

  177. Landau 1986 Theory of elasticity 

  178. J Geom Graph Tachi 14 203 2010 Freeform variations of origami 

  179. Graph Combinator Demaine 27 377 2011 10.1007/s00373-011-1025-2 (Non) existence of pleated folds: how paper folds between creases 

  180. Resch RD. Self-supporting structural unit having a series of repetitious geometrical modules. US patent no. 3407558; 1968. 

  181. J Mech Des Tachi 135 111006 2013 10.1115/1.4025389 Designing freeform origami tessellations by generalizing Resch's patterns 

  182. Nat Mater Al-Mulla 14 366 2015 10.1038/nmat4258 Origami: folding creases through bending 

  183. Soft Matter Kim 8 2375 2012 10.1039/c2sm06681e Thermally responsive rolling of thin gel strips with discrete variations in swelling 

  184. Phys Rev B Qi 90 245437 2014 10.1103/PhysRevB.90.245437 Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami 

  185. Proc Natl Acad Sci Cho 111 17390 2014 10.1073/pnas.1417276111 Engineering the shape and structure of materials by fractal cut 

  186. Proc Natl Acad Sci Zhang 112 11757 2015 10.1073/pnas.1515602112 A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes 

  187. Science Xu 347 154 2015 10.1126/science.1260960 Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling 

  188. Phys Rev Lett Castle 113 245502 2014 10.1103/PhysRevLett.113.245502 Making the cut: lattice kirigami rules 

  189. Proc Natl Acad Sci Sussman 112 7449 2015 10.1073/pnas.1506048112 Algorithmic lattice kirigami: a route to pluripotent materials 

  190. 10.1103/PhysRevLett.116.135501 Chen BG-G, Liu B, Evans AA, Paulose J, Cohen I, Vitelli V, et al. Topological mechanics of origami and kirigami; 2016. arXiv:1508:00795. 

  191. Extreme Mech Lett Eidini 6 96 2016 10.1016/j.eml.2015.12.006 Zigzag-base folded sheet cellular mechanical metamaterials 

  192. Sci Adv Eidini 1 1500224 2015 10.1126/sciadv.1500224 Unraveling metamaterial properties in zigzag-base folded sheets 

  193. J Mech Robot Liu 8 031002 2016 10.1115/1.4031953 Deployable prismatic structures with rigid origami patterns 

  194. Phys Rev E Brunck 93 033005 2016 10.1103/PhysRevE.93.033005 Elastic theory of origami-based metamaterials 

  195. J Appl Mech Hanna 82 081001 2015 10.1115/1.4030659 Force-deflection modeling for generalized origami waterbomb-base mechanisms 

  196. Phys Rev E Waitukaitis 93 023003 2016 10.1103/PhysRevE.93.023003 Origami building blocks: generic and special four-vertices 

  197. IEEE Trans Comput Huffman 25 1010 1976 10.1109/TC.1976.1674542 Curvature and creases: a primer on paper 

  198. Phys Rev E Evans 92 013205 2015 10.1103/PhysRevE.92.013205 Lattice mechanics of origami tessellations 

  199. Bunge 1982 Texture analysis in materials science: mathematical methods 

  200. 10.1115/1.4034970 Bos F, Vouga E, Gottesman O, Wardetzky M. On the incompressibility of cylindrical origami patterns; 2016. arXiv:1507:08472. 

  201. Nat Commun Overvelde 7 10929 2016 10.1038/ncomms10929 A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom 

  202. J Appl Mech Safsten 83 051001 2016 10.1115/1.4032572 Analyzing the stability properties of kaleidocycles 

  203. J Mech Robot Klett 8 034501 2016 10.1115/1.4032203 Kinematic analysis of congruent multilayer tessellations 

  204. Smart Mater Struct Cheung 23 094012 2014 10.1088/0964-1726/23/9/094012 Origami interleaved tube cellular materials 

  205. J IASS Tachi 53 217 2012 Rigid-foldable cylinders and cells 

  206. Proc Natl Acad Sci Filipov 112 12321 2015 10.1073/pnas.1509465112 Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials 

  207. Science Cheung 341 1219 2013 10.1126/science.1240889 Reversibly assembled cellular composite materials 

  208. Soft Matter Genzer 2 310 2006 10.1039/b516741h Soft matter with hard skin: from skin wrinkles to templating and material characterization 

  209. Proc Natl Acad Sci Bende 112 11175 2015 10.1073/pnas.1509228112 Geometrically controlled snapping transitions in shells with curved creases 

  210. Adv Mater Rafsanjani 27 5931 2015 10.1002/adma.201502809 Snapping mechanical metamaterials under tension 

  211. Appl Phys Lett Arora 88 053108 2006 10.1063/1.2168516 Membrane folding to achieve three-dimensional nanostructures: nanopatterned silicon nitride folded with stressed chromium hinges 

  212. Adv Mater Na 27 79 2015 10.1002/adma.201403510 Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers 

  213. Phys Rev Lett Dias 109 114301 2012 10.1103/PhysRevLett.109.114301 Geometric mechanics of curved crease origami 

  214. Phys Rev Lett Thiria 107 025506 2011 10.1103/PhysRevLett.107.025506 Relaxation mechanisms in the unfolding of thin sheets 

  215. Phys Rev Lett Lechenault 112 244301 2014 10.1103/PhysRevLett.112.244301 Mechanical response of a creased sheet 

  216. Adv Mater Overvelde 24 2337 2012 10.1002/adma.201104395 Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape 

  217. Adv Funct Mater Singamaneni 19 1426 2009 10.1002/adfm.200801675 Bifurcated mechanical behavior of deformed periodic porous solids 

  218. Bendsoe 2003 Topology optimization: theory, methods and applications 

  219. Int J Solids Struct de Kruijf 44 7092 2007 10.1016/j.ijsolstr.2007.03.028 Topological design of structures and composite materials with multiobjectives 

  220. J Mech Phys Solids Overvelde 64 351 2014 10.1016/j.jmps.2013.11.014 Relating pore shape to the non-linear response of periodic elastomeric structures 

  221. Phys Rev Lett Florijn 113 175503 2014 10.1103/PhysRevLett.113.175503 Programmable mechanical metamaterials 

  222. Int J Impact Eng Chung 27 729 2002 10.1016/S0734-743X(02)00011-8 Compressive response of circular cell polycarbonate honeycombs under inplane biaxial static and dynamic loading, Part I: experiments 

  223. Int J Solids Struct Okumura 58 288 2015 10.1016/j.ijsolstr.2015.01.015 Effect of prestrains on swelling-induced buckling patterns in gel films with a square lattice of holes 

  224. Nano Lett Jang 9 2113 2009 10.1021/nl9006112 Combining pattern instability and shape-memory hysteresis for phononic switching 

  225. Smart Mater Struct Karnessis 22 084008 2013 10.1088/0964-1726/22/8/084008 Uniaxial and buckling mechanical response of auxetic cellular tubes 

  226. Extreme Mech Lett Shan 4 96 2015 10.1016/j.eml.2015.05.002 Design of planar isotropic negative Poisson’s ratio structures 

  227. J Mech Phys Solids Krishnan 57 1500 2009 10.1016/j.jmps.2009.05.012 Optical properties of two-dimensional polymer photonic crystals after deformation-induced pattern transformations 

  228. Soft Matter Li 8 10322 2012 10.1039/c2sm25816a Switching periodic membranes via pattern transformation and shape memory effect 

  229. Extreme Mech Lett Yang 6 1 2016 10.1016/j.eml.2015.11.004 Phase-transforming and switchable metamaterials 

  230. Soft Matter Keplinger 8 285 2012 10.1039/C1SM06736B Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation 

  231. Nano Lett Jang 6 740 2006 10.1021/nl052577q Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography 

  232. Soft Matter Singamaneni 6 5681 2010 10.1039/c0sm00374c Buckling instabilities in periodic composite polymeric materials 

  233. Jaffe 1971 Piezoelectric ceramics 

  234. Adv Mater Grima 28 385 2016 10.1002/adma.201503653 Auxetic perforated mechanical metamaterials with randomly oriented cuts 

  235. Mech Mater Carta 97 67 2016 10.1016/j.mechmat.2016.02.012 Design of a porous material with isotropic negative Poisson’s ratio 

  236. Int J Solids Struct Calladine 14 161 1978 10.1016/0020-7683(78)90052-5 Buckminster Fuller's “tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames 

  237. Valdevit 345 2016 Three-dimensional microfabrication using two-photon polymerization Fabrication of 3D micro-architected/nano-architected materials 

  238. Proc Phys Soc Hall 64 747 1951 10.1088/0370-1301/64/9/303 The deformation and ageing of mild steel: III discussion of results 

  239. J Iron Steel Inst Petch 174 25 1953 The cleavage strength of polycrystals 

  240. Nature Schiotz 391 561 1998 10.1038/35328 Softening of nanocrystalline metals at very small grain sizes 

  241. Acta Mater Gazder 59 4847 2011 10.1016/j.actamat.2011.04.027 Evolution of recrystallization texture in a 0.78 wt.% Cr extra-low-carbon steel after warm and cold rolling 

  242. Philos Trans R Soc Lond A Griffith 221 163 1921 10.1098/rsta.1921.0006 The phenomena of rupture and flow in solids 

  243. Nat Mater Jang 12 893 2013 10.1038/nmat3738 Fabrication and deformation of three-dimensional hollow ceramic nanostructures 

  244. Rayneau-Kirkhope DJ, Dias MA. Designing recipes for auxetic behaviour of 2-d lattices; 2016. arXiv:1602:06105. 

  245. Adv Mater Clausen 27 5523 2015 10.1002/adma.201502485 Topology optimized architectures with programmable Poisson's ratio over large deformations 

  246. Composites Part B Kaminakis 43 2655 2012 10.1016/j.compositesb.2012.03.018 Topology optimization for compliant mechanisms, using evolutionary-hybrid algorithms and application to the design of auxetic materials 

  247. Europhys Lett Pickett 78 48003 2007 10.1209/0295-5075/78/48003 Self-folding origami membranes 

  248. Int J Solids Struct Lebee 47 2620 2010 10.1016/j.ijsolstr.2010.05.024 Transverse shear stiffness of a chevron folded core used in sandwich construction 

  249. Science Felton 345 644 2014 10.1126/science.1252610 A method for building self-folding machines 

  250. Proc Natl Acad Sci Hawkes 107 12441 2010 10.1073/pnas.0914069107 Programmable matter by folding 

  251. Robotica An 29 87 2011 10.1017/S0263574710000731 Planning to fold multiple objects from a single self-folding sheet 

  252. Mater Sci Eng A Kuribayashi 419 131 2006 10.1016/j.msea.2005.12.016 Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil 

  253. Int J Mater Prod Technol Elsayed 21 217 2004 10.1504/IJMPT.2004.004753 A continuous folding process for sheet materials 

  254. Appl Phys Lett Tang 104 083501 2014 10.1063/1.4866145 Origami-enabled deformable silicon solar cells 

  255. Nat Commun Song 5 3140 2014 10.1038/ncomms4140 Origami lithium-ion batteries 

  256. Europhys Lett Dias 100 54005 2012 10.1209/0295-5075/100/54005 The shape and mechanics of curved-fold origami structures 

  257. Phys Rev Lett Py 98 156103 2007 10.1103/PhysRevLett.98.156103 Capillary origami: spontaneous wrapping of a droplet with an elastic sheet 

  258. Appl Phys Lett Bassik 95 091901 2009 10.1063/1.3212896 Microassembly based on hands free origami with bidirectional curvature 

  259. Sadoc 2006 Geometrical frustration 

  260. Nat Commun Mao 6 5968 2015 10.1038/ncomms6968 Mechanical instability at finite temperature 

  261. Europhys Lett Ellenbroek 87 34004 2009 10.1209/0295-5075/87/34004 Non-affine response: Jammed packings vs. spring networks 

  262. Europhys Lett Katgert 92 34002 2010 10.1209/0295-5075/92/34002 Jamming and geometry of two-dimensional foams 

  263. Phys Rev E Goodrich 90 022138 2014 10.1103/PhysRevE.90.022138 Jamming in finite systems: stability, anisotropy, fluctuations, and scaling 

  264. Phys Rev Lett Ellenbroek 114 135501 2015 10.1103/PhysRevLett.114.135501 Rigidity loss in disordered systems: three scenarios 

  265. Phys Rev Lett Coulais 115 044301 2015 10.1103/PhysRevLett.115.044301 Discontinuous buckling of wide beams and metabeams 

  266. Mech Mater Haghpanah 68 267 2014 10.1016/j.mechmat.2013.09.003 Plastic collapse of lattice structures under a general stress state 

  267. Acta Mater Jacobsen 55 6724 2007 10.1016/j.actamat.2007.08.036 Compression behavior of micro-scale truss structures formed from self-propagating polymer waveguides 

  268. Adv Mater Jacobsen 19 3892 2007 10.1002/adma.200700797 Micro-scale truss structures formed from self-propagating photopolymer waveguides 

  269. Acta Mater Jacobsen 56 2540 2008 10.1016/j.actamat.2008.01.051 Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides 

  270. J Appl Phys Qian 119 055102 2016 10.1063/1.4941273 Elastic metamaterial beam with remotely tunable stiffness 

  271. Phys Rev Lett Ding 99 093904 2007 10.1103/PhysRevLett.99.093904 Metamaterial with simultaneously negative bulk modulus and mass density 

  272. J Mech Des Matthews 138 041404 2016 10.1115/1.4032774 Hierarchical design of negative stiffness metamaterials using a bayesian network classifier 

  273. Sci Rep Oh 6 23630 2016 10.1038/srep23630 Elastic metamaterials for independent realization of negativity in density and stiffness 

  274. Appl Phys Lett Oh 108 093501 2016 10.1063/1.4943095 Adjoining of negative stiffness and negative density bands in an elastic metamaterial 

  275. Mater Sci Eng A Li 622 114 2015 10.1016/j.msea.2014.11.028 Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures 

  276. Proc Natl Acad Sci Paulose 112 7639 2015 10.1073/pnas.1502939112 Selective buckling via states of self-stress in topological metamaterials 

  277. New J Phys Kadic 15 023029 2013 10.1088/1367-2630/15/2/023029 On anisotropic versions of three-dimensional pentamode metamaterials 

  278. Mech Mater Sigmund 20 351 1995 10.1016/0167-6636(94)00069-7 Tailoring materials with prescribed elastic properties 

  279. New J Phys Milton 8 248 2006 10.1088/1367-2630/8/10/248 On cloaking for elasticity and physical equations with a transformation invariant form 

  280. Phys Status Solidi B Buckmann 252 1671 2015 10.1002/pssb.201451698 Mechanical metamaterials with anisotropic and negative effective mass-density tensor made from one constituent material 

  281. New J of Phys Buckmann 16 033032 2014 10.1088/1367-2630/16/3/033032 On three-dimensional dilational elastic metamaterials 

  282. Appl Phys Lett Schittny 103 231905 2013 10.1063/1.4838663 Elastic measurements on macroscopic three-dimensional pentamode metamaterials 

  283. Phys Rev B Martin 86 155116 2012 10.1103/PhysRevB.86.155116 Phonon band structures of three-dimensional pentamode metamaterials 

  284. Phys Lett A Huang 380 1334 2016 10.1016/j.physleta.2016.01.041 Pentamodal property and acoustic band gaps of pentamode metamaterials with different cross-section shapes 

  285. Smart Mater Struct Mejica 22 115013 2013 10.1088/0964-1726/22/11/115013 Comparative study of potential pentamodal metamaterials inspired by Bravais lattices 

  286. Phys Rev Appl Kadic 2 054007 2014 10.1103/PhysRevApplied.2.054007 Pentamode metamaterials with independently tailored bulk modulus and mass density 

  287. Phys Rev Lett Layman 111 024302 2013 10.1103/PhysRevLett.111.024302 Highly anisotropic elements for acoustic pentamode applications 

  288. J Mater Sci Grima 41 3193 2006 10.1007/s10853-006-6339-8 Auxetic behavior from rotating triangles 

  289. J Non-Cryst Solids Grima 356 1980 2010 10.1016/j.jnoncrysol.2010.05.074 Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations 

  290. Proc R Soc Lond A Grima 468 810 2012 10.1098/rspa.2011.0273 On the auxetic properties of generic rotating rigid triangles 

  291. Phys Status Solidi B Chetcuti 251 297 2014 10.1002/pssb.201384252 Modeling auxetic foams through semi-rigid rotating triangles 

  292. J Appl Mech-Trans ASME Wicks 71 652 2004 10.1115/1.1778720 Sandwich plates actuated by a Kagome planar truss 

  293. Phys Rev B Wills 66 144407 2002 10.1103/PhysRevB.66.144407 Model of localized highly frustrated ferromagnetism: the kagome spin ice 

  294. Int J Solids Struct Hutchinson 40 6969 2003 10.1016/S0020-7683(03)00348-2 Kagorne plate structures for actuation 

  295. Int J Solids Struct Wang 40 6981 2003 10.1016/S0020-7683(03)00349-4 On the performance of truss panels with Kagome cores 

  296. Int J Solids Struct Lucato 41 3521 2004 10.1016/j.ijsolstr.2004.02.012 Design and demonstration of a high authority shape morphing structure 

  297. Phys Rev E Mao 83 011111 2011 10.1103/PhysRevE.83.011111 Coherent potential approximation of random nearly isostatic kagome lattice 

  298. Proc Natl Acad Sci Sun 109 12369 2012 10.1073/pnas.1119941109 Surface phonons, elastic response, and conformal invariance in twisted kagome lattices 

  299. Proc Natl Acad Sci Vitelli 109 12266 2012 10.1073/pnas.1209950109 Topological soft matter: kagome lattices with a twist 

  300. Nat Phys Kane 10 39 2014 10.1038/nphys2835 Topological boundary modes in isostatic lattices 

  301. Science Baughman 279 1522 1998 10.1126/science.279.5356.1522 Materials with negative compressibilities in one or more dimensions 

  302. Phys Rev E. Chen 90 033201 2014 10.1103/PhysRevE.90.033201 Bistability and thermal coupling in elastic metamaterials with negative compressibility 

  303. Philos Trans R Soc-A Thompson 292 1 1979 Stability predictions through a succession of folds 

  304. Nature Thompson 296 135 1982 10.1038/296135a0 ‘Paradoxical’mechanics under fluid flow 

  305. J Mech Phys Solids Lakes 50 979 2002 10.1016/S0022-5096(01)00116-8 Dramatically stiffer elastic composite materials due to a negative stiffness phase? 

  306. J Am Chem Soc Cai 137 9296 2015 10.1021/jacs.5b03280 Giant negative area compressibility tunable in a soft porous framework material 

  307. J Phys C Munn 5 535 1972 10.1088/0022-3719/5/5/005 Role of the elastic constants in negative thermal expansion of axial solids 

  308. Chem Sci Ogborn 3 3011 2012 10.1039/c2sc20596c Supramolecular mechanics in a metal-organic framework 

  309. Adv Mater Lakes 5 293 1993 10.1002/adma.19930050416 Advances in negative Poisson's ratio materials 

  310. Adv Mater Babaee 25 5044 2013 10.1002/adma.201301986 3D soft metamaterials with negative Poisson's ratio 

  311. J Mater Sci Lee 32 2397 1997 10.1023/A:1018557107786 Anisotropic polyurethane foam with Poisson'sratio greater than 1 

  312. Nat Commun Cai 5 4337 2014 10.1038/ncomms5337 Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework 

  313. Chem Commun Hodgson 50 5264 2014 10.1039/C3CC47032F Negative area compressibility in silver (I) tricyanomethanide 

  314. J Am Chem Soc Li 134 11940 2012 10.1021/ja305196u Negative linear compressibility of a metal-organic framework 

  315. CrystEngComm Collings 16 3498 2014 10.1039/C3CE42165A Geometric switching of linear to area negative thermal expansion in uniaxial metal-organic frameworks 

  316. Phys Rev Lett Haines 91 015503 2003 10.1103/PhysRevLett.91.015503 Collapsing cristobalitelike structures in silica analogues at high pressure 

  317. J Appl Phys McCann 43 1432 1972 10.1063/1.1661336 Compressibility of hexagonal selenium by X-ray and neutron diffraction 

  318. J Am Chem Soc Cairns 134 4454 2011 10.1021/ja204908m Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn [Ag(CN)2]3 

  319. J Phys Soc Jpn Ohwada 68 3286 1999 10.1143/JPSJ.68.3286 Structural aspects of NaV2O5 under high pressure 

  320. J Appl Crystallogr Cliffe 45 1321 2012 10.1107/S0021889812043026 PASCal: a principal axis strain calculator for thermal expansion and compressibility determination 

  321. Science Furukawa 341 974 2013 10.1126/science.1230444 The chemistry and applications of metal-organic frameworks 

  322. J Mater Sci Miller 44 5441 2009 10.1007/s10853-009-3692-4 Negative thermal expansion: a review 

  323. J Chem Soc Dalton Evans 3317 1999 10.1039/a904297k Negative thermal expansion materials 

  324. Am J Phys Bisquert 73 735 2005 10.1119/1.1891173 Master equation approach to the non-equilibrium negative specific heat at the glass transition 

  325. J Mech Phys Solids Steeves 55 1803 2007 10.1016/j.jmps.2007.02.009 Concepts for structurally robust materials that combine low thermal expansion with high stiffness 

  326. Appl Phys Lett Lakes 90 221905 2007 10.1063/1.2743951 Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude 

  327. Science Fortes 331 742 2011 10.1126/science.1198640 Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate 

  328. Nat Commun Azuma 2 347 2011 10.1038/ncomms1361 Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer 

  329. Phys Status Solidi B Ha 252 1431 2015 10.1002/pssb.201552158 Controllable thermal expansion of large magnitude in chiral negative Poisson's ratio lattices 

  330. Mech Mater Miller 40 351 2008 10.1016/j.mechmat.2007.09.004 A generalised scale-independent mechanism for tailoring of thermal expansivity: positive and negative 

  331. Compos Sci Technol Grima 70 2248 2010 10.1016/j.compscitech.2010.05.003 Composites with needle-like inclusions exhibiting negative thermal expansion: a preliminary investigation 

  332. Phys Status Solidi B Grima 250 2051 2013 10.1002/pssb.201384226 Negative thermal expansion from disc, cylindrical, and needle shaped inclusions 

  333. Scr Mater Grima 65 565 2011 10.1016/j.scriptamat.2011.06.011 Negative linear compressibility of hexagonal honeycombs and related systems 

  334. Angew Chem Int Ed Wu 120 9061 2008 10.1002/ange.200803925 Negative thermal expansion in the metal-organic framework material Cu3(1, 3, 5-benzenetricarboxylate)2 

  335. Comput Mater Sci Prawoto 58 140 2012 10.1016/j.commatsci.2012.02.012 Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio 

  336. Endeavour Evans 15 170 1991 10.1016/0160-9327(91)90123-S Auxetic polymers: a new range of materials 

  337. J Mater Sci Lett Grima 19 1563 2000 10.1023/A:1006781224002 Auxetic behavior from rotating squares 

  338. Adv Mater Grima 12 1912 2000 10.1002/1521-4095(200012)12:24<1912::AID-ADMA1912>3.0.CO;2-7 Do zeolites have negative Poisson's ratios? 

  339. Acta Mater Smith 48 4349 2000 10.1016/S1359-6454(00)00269-X A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model 

  340. Phys Status Solidi B Grima 242 561 2005 10.1002/pssb.200460376 Auxetic behaviour from rotating rigid units 

  341. Phys Status Solidi B Grima 244 866 2007 10.1002/pssb.200572706 Auxetic behaviour from rotating semi-rigid units 

  342. J Mater Sci Grima 43 5962 2008 10.1007/s10853-008-2765-0 Auxetic behaviour from stretching connected squares 

  343. Adv Eng Mater Grima 12 855 2010 10.1002/adem.201000140 Hexagonal honeycombs with zero Poisson's ratios and enhanced stiffness 

  344. Nat Mater Grima 11 565 2012 10.1038/nmat3364 Mechanical metamaterials: materials that push back 

  345. Smart Mater Struct Grima 22 084016 2013 10.1088/0964-1726/22/8/084016 Smart metamaterials with tunable auxetic and other properties 

  346. Phys Status Solidi R Mizzi 9 425 2015 10.1002/pssr.201510178 Auxetic metamaterials exhibiting giant negative Poisson's ratios 

  347. Compos Struct Masters 35 403 1996 10.1016/S0263-8223(96)00054-2 Models for the elastic deformation of honeycombs 

  348. Nature Rothenburg 354 470 1991 10.1038/354470a0 Microstructure of isotropic materials with negative Poisson's ratio 

  349. Smart Mater Struct Pozniak 22 084009 2013 10.1088/0964-1726/22/8/084009 Computer simulations of auxetic foams in two dimensions 

  350. Modell Simul Mater Sci Eng Yi 21 065018 2013 10.1088/0965-0393/21/6/065018 Study of architectural responses of 3D periodic cellular materials 

  351. Chem Commun Grima 32 4065 2005 10.1039/b505839b Networked calix[4] arene polymers with unusual mechanical properties 

  352. Int Mater Rev Silva 50 345 2005 10.1179/174328005X41168 Cork: properties, capabilities and applications 

  353. Mater Sci-Poland Carneiro 31 561 2013 10.2478/s13536-013-0140-6 Auxetic materials-a review 

  354. Hou 155 2015 Mechanics of advanced materials Metamaterials with negative Poisson’s ratio: a review of mechanical properties and deformation mechanisms 

  355. Phys Status Solidi B Critchley 250 1963 2013 10.1002/pssb.201248550 A review of the manufacture, mechanical properties and potential applications of auxetic foams 

  356. Phys Mesomech Goldstein 17 97 2014 10.1134/S1029959914020027 Negative Poisson’s ratio for cubic crystals and nano/microtubes 

  357. J Phys D Caddock 22 1877 1989 10.1088/0022-3727/22/12/012 Microporous materials with negative Poisson's ratios. I. Microstructure and mechanical properties 

  358. Composites Clarke 25 863 1994 10.1016/0010-4361(94)90027-2 Negative Poisson's ratios in angle-ply laminates: theory and experiment 

  359. Scr Mater Neelakantan 106 30 2015 10.1016/j.scriptamat.2015.04.028 Out-of-plane auxeticity in sintered fibre network mats 

  360. Proc Natl Acad Sci Shim 109 5978 2012 10.1073/pnas.1115674109 Buckling-induced encapsulation of structured elastic shells under pressure 

  361. J Appl Mech Reis 82 111001 2015 10.1115/1.4031456 A perspective on the revival of structural (In)stability with novel opportunities for function: from buckliphobia to buckliphilia 

  362. Sci Rep Gatt 5 8395 2015 10.1038/srep08395 Hierarchical auxetic mechanical metamaterials 

  363. J Appl Mech Ting 72 929 2005 10.1115/1.2042483 Negative Poisson’s ratios in anisotropic linear elastic media 

  364. Nature Baughman 392 362 1998 10.1038/32842 Negative Poisson's ratios as a common feature of cubic metals 

  365. Science Baughman 288 2018 2000 10.1126/science.288.5473.2018 Negative Poisson's ratios for extreme states of matter 

  366. Acta Biomater Soman 8 2587 2012 10.1016/j.actbio.2012.03.035 Spatial tuning of negative and positive Poisson’s ratio in a multi-layer scaffold 

  367. Adv Funct Mater Fozdar 21 2712 2011 10.1002/adfm.201002022 Three-dimensional polymer constructs exhibiting a tunable negative Poisson's ratio 

  368. Int J Solids Struct Taylor 48 1330 2011 10.1016/j.ijsolstr.2011.01.017 The effects of hierarchy on the in-plane elastic properties of honeycombs 

  369. Adv Funct Mater Zhang 23 3226 2013 10.1002/adfm.201202666 Tuning the Poisson's ratio of biomaterials for investigating cellular response 

  370. J Mech Behav Biomed Ma 23 22 2013 10.1016/j.jmbbm.2013.03.021 Heterogeneous PVA hydrogels with micro-cells of both positive and negative Poisson's ratios 

  371. Gibson 2014 Additive manufacturing technologies 

  372. Proc Natl Acad Sci Bauer 111 2453 2014 10.1073/pnas.1315147111 High-strength cellular ceramic composites with 3D microarchitecture 

  373. Acta Mater Li 105 75 2016 10.1016/j.actamat.2015.12.017 The development of TiNi-based negative Poisson's ratio structure using selective laser melting 

  374. Phys Status Solidi B Schwerdtfeger 247 269 2010 10.1002/pssb.200945513 Auxetic cellular structures through selective electron-beam melting 

  375. J Mater Sci Ravirala 42 7433 2007 10.1007/s10853-007-1583-0 Interlocking hexagons model for auxetic behaviour 

  376. Mater Des Wang 99 467 2016 10.1016/j.matdes.2016.03.088 Interlocking assembled 3D auxetic cellular structures 

  377. Prog Polym Sci Brown 2016 10.1016/j.progpolymsci.2016.01.001 Melt electrospinning today: an opportune time for an emerging polymer process 

  378. Nat Commun Visser 6 6933 2015 10.1038/ncomms7933 Reinforcement of hydrogels using three-dimensionally printed microfibres 

  379. Adv Healthc Mater Costa 4 864 2015 10.1002/adhm.201400591 Additively manufactured device for dynamic culture of large arrays of 3D tissue engineered constructs 

  380. Mater Sci Eng C Brown 45 698 2014 10.1016/j.msec.2014.07.034 Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing 

  381. Tissue Eng Part B Rev Muerza-Cascante 21 187 2015 10.1089/ten.teb.2014.0347 Melt electrospinning and its technologization in tissue engineering 

  382. Proc Natl Acad Sci Buckmann 112 4930 2015 10.1073/pnas.1501240112 Mechanical cloak design by direct lattice transformation 

  383. Lantada 121 2013 Handbook on advanced design and manufacturing technologies for biomedical devices Porous and lattice structures for biodevices with advanced properties 

  384. Mater Des Wang 67 159 2015 10.1016/j.matdes.2014.11.033 Designable dual-material auxetic metamaterials using three-dimensional printing 

  385. Adv Mater Schwerdtfeger 23 2650 2011 10.1002/adma.201004090 Design of auxetic structures via mathematical optimization 

  386. Smart Mater Struct Korner 24 025013 2015 10.1088/0964-1726/24/2/025013 A systematic approach to identify cellular auxetic materials 

  387. Nature Yaghi 423 705 2003 10.1038/nature01650 Reticular synthesis and the design of new materials 

  388. Phys Rev Lett Ortiz 109 195502 2012 10.1103/PhysRevLett.109.195502 Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? 

  389. Nature Rothemund 440 297 2006 10.1038/nature04586 Folding DNA to create nanoscale shapes and patterns 

  390. Sci Bull Wang 60 1661 2015 10.1007/s11434-015-0901-1 The codes of matter and their applications 

  391. Z Angew Math Phys dell’Isola 66 3473 2015 10.1007/s00033-015-0556-4 Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로