$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

Nature energy, v.3 no.3, 2018년, pp.227 - 235  

Wang, Xu (School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA) ,  Zeng, Wei (School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA) ,  Hong, Liang (Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China) ,  Xu, Wenwen (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan, China) ,  Yang, Haokai (Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA) ,  Wang, Fan (School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA) ,  Duan, Huigao (School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA) ,  Tang, Ming (Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA) ,  Jiang, Hanqing (State K)

Abstract AI-Helper 아이콘AI-Helper

Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendri...

참고문헌 (54)

  1. Energy Environ. Sci. A Zhamu 5 5701 2012 10.1039/C2EE02911A Zhamu, A. et al. Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 5, 5701-5707 (2012). 

  2. J. Phys. Chem. Lett. M Safari 5 3486 2014 10.1021/jz5018202 Safari, M., Adams, B. & Nazar, L. Kinetics of oxygen reduction in aprotic Li-O2 cells: a model-based study. J. Phys. Chem. Lett. 5, 3486-3491 (2014). 

  3. Nat. Nanotech. S Kim 9 306 2014 10.1038/nnano.2014.47 Kim, S. et al. All-water-based electron-beam lithography using silk as a resist. Nat. Nanotech. 9, 306-310 (2014). 

  4. J. Phys. Chem. Lett. S Dong 5 615 2014 10.1021/jz402755b Dong, S. et al. Insight into enhanced cycling performance of Li-O2 batteries based on binary CoSe2/CoO nanocomposite electrodes. J. Phys. Chem. Lett. 5, 615-621 (2014). 

  5. Nat. Energy P Albertus 3 16 2018 10.1038/s41560-017-0047-2 Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16-21 (2018). 

  6. 10.1149/1.2055116 Hirai, T., Yoshimatsu, I. & Yamaki, J. i. Effect of additives on lithium cycling efficiency. J. Electrochem. Soc. 141, 2300-2305 (1994). 

  7. J. Electrochem. Soc. D Aurbach 143 3809 1996 10.1149/1.1837300 Aurbach, D., Markovsky, B., Shechter, A., Ein-Eli, Y. & Cohen, H. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 143, 3809-3820 (1996). 

  8. J. Power Sources D Aurbach 54 76 1995 10.1016/0378-7753(94)02044-4 Aurbach, D. et al. Recent studies of the lithium-liquid electrolyte interface. Electrochemical, morphological and spectral studies of a few important systems. J. Power Sources 54, 76-84 (1995). 

  9. Langmuir A Schechter 15 3334 1999 10.1021/la981048h Schechter, A., Aurbach, D. & Cohen, H. X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 15, 3334-3342 (1999). 

  10. Energy Environ. Sci. W Xu 7 513 2014 10.1039/C3EE40795K Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513-537 (2014). 

  11. Angew. Chem. Int. Ed. R Murugan 46 7778 2007 10.1002/anie.200701144 Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778-7781 (2007). 

  12. J. Power Sources KH Kim 196 764 2011 10.1016/j.jpowsour.2010.07.073 Kim, K. H. et al. Characterization of the interface between LiCoO2 and Li7 La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764-767 (2011). 

  13. Electrochem. Commun. L Gireaud 8 1639 2006 10.1016/j.elecom.2006.07.037 Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B. & Tarascon, J.-M. Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochem. Commun. 8, 1639-1649 (2006). 

  14. J. Phys. Chem. C MZ Mayers 116 26214 2012 10.1021/jp309321w Mayers, M. Z., Kaminski, J. W. & Miller, T. F.III. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J. Phys. Chem. C 116, 26214-26221 (2012). 

  15. Nano Lett. K Yan 14 6016 2014 10.1021/nl503125u Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016-6022 (2014). 

  16. Nat. Nanotech. G Zheng 9 618 2014 10.1038/nnano.2014.152 Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618-623 (2014). 

  17. J. Power Sources H Lee 284 103 2015 10.1016/j.jpowsour.2015.03.004 Lee, H., Lee, D. J., Kim, Y.-J., Park, J.-K. & Kim, H.-T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103-108 (2015). 

  18. 10.1038/nenergy.2016.114 Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016). 

  19. Angew. Chem. Int. Ed. S Choudhury 56 13070 2017 10.1002/anie.201707754 Choudhury, S. et al. Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem. Int. Ed. 56, 13070-13077 (2017). 

  20. Nat. Energy K Yan 1 16010 2016 10.1038/nenergy.2016.10 Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). 

  21. 10.1038/ncomms10992 Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016). 

  22. Nat. Nanotech. D Lin 11 626 2016 10.1038/nnano.2016.32 Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626-632 2016). 

  23. Nano Lett. LL Lu 16 4431 2016 10.1021/acs.nanolett.6b01581 Lu, L.-L. et al. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 16, 4431-4437 (2016). 

  24. 10.1038/ncomms9058 Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). 

  25. Adv. Mater. Q Yun 28 6932 2016 10.1002/adma.201601409 Yun, Q. et al. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932-6939 (2016). 

  26. Adv. Mater. Y Guo 29 1700007 2017 10.1002/adma.201700007 Guo, Y., Li, H. & Zhai, T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017). 

  27. Nat. Nanotech. D Lin 12 194 2017 10.1038/nnano.2017.16 Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194-206 (2017). 

  28. J. Electrochem. Soc. C Monroe 152 A396 2005 10.1149/1.1850854 Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396-A404 (2005). 

  29. Phys. Rev. Lett. Z Ahmad 119 056003 2017 10.1103/PhysRevLett.119.056003 Ahmad, Z. & Viswanathan, V. Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119, 056003 (2017). 

  30. Prog. Surf. Sci. E Chason 88 103 2013 10.1016/j.progsurf.2013.02.002 Chason, E., Jadhav, N., Pei, F., Buchovecky, E. & Bower, A. Growth of whiskers from Sn surfaces: driving forces and growth mechanisms. Prog. Surf. Sci. 88, 103-131 (2013). 

  31. J. Electrochem. Soc. E Chason 160 D3285 2013 10.1149/2.048312jes Chason, E. et al. Understanding residual stress in electrodeposited Cu thin films. J. Electrochem. Soc. 160, D3285-D3289 (2013). 

  32. Phys. Rev. Lett. JW Shin 103 056102 2009 10.1103/PhysRevLett.103.056102 Shin, J. W. & Chason, E. Compressive stress generation in Sn thin films and the role of grain boundary diffusion. Phys. Rev. Lett. 103, 056102 (2009). 

  33. 10.1038/ncomms8436 Li, W. Y. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). 

  34. Nat. Commun. JF Qian 6 6362 2015 10.1038/ncomms7362 Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). 

  35. J. Appl. Polym. Sci. Z Wang 131 2014 10.1002/app.41029 Wang, Z., Volinsky, A. A. & Gallant, N. D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 131, 41050 (2014). 

  36. James, A. M. & Lord, M. P. Macmillan’s Chemical and Physical Data (Macmillan, London, 1992). 

  37. Proc. Natl Acad. Sci. USA C Xu 114 57 2017 10.1073/pnas.1615733114 Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V. & Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl Acad. Sci. USA 114, 57-61 (2017). 

  38. J. Power Sources J Yamaki 74 219 1998 10.1016/S0378-7753(98)00067-6 Yamaki, J. et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74, 219-227 (1998). 

  39. Energy Environ. Sci. P Bai 9 3221 2016 10.1039/C6EE01674J Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221-3229 (2016). 

  40. J. Power Sources J Steiger 261 112 2014 10.1016/j.jpowsour.2014.03.029 Steiger, J., Kramer, D. & Monig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112-119 (2014). 

  41. Philos. Mag. HJS Sand 1 45 1901 10.1080/14786440109462590 Sand, H. J. S. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Philos. Mag. 1, 45-79 (1901). 

  42. 10.1002/9781119011965 Kato, T., Handwerker, C. A. & Bath, J. Mitigating Tin Whisker Risks: Theory and Practice (John Wiley & Sons, Hoboken, NJ, 2016). 

  43. Acta Mater. P Sarobol 61 1991 2013 10.1016/j.actamat.2012.12.019 Sarobol, P., Blendell, J. E. & Handwerker, C. A. Whisker and hillock growth via coupled localized Coble creep, grain boundary sliding, and shear induced grain boundary migration. Acta Mater. 61, 1991-2003 (2013). 

  44. Thin Solid Films R Abermann 129 71 1985 10.1016/0040-6090(85)90096-3 Abermann, R. & Koch, R. The internal-stress in thin silver, copper and gold-films. Thin Solid Films 129, 71-78 (1985). 

  45. Acta Mater. F Spaepen 48 31 2000 10.1016/S1359-6454(99)00286-4 Spaepen, F. Interfaces and stresses in thin films. Acta Mater. 48, 31-42 (2000). 

  46. Phys. Rev. Lett. E Chason 88 156103 2002 10.1103/PhysRevLett.88.156103 Chason, E., Sheldon, B. W., Freund, L. B., Floro, J. A. & Hearne, S. J. Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002). 

  47. Science Y Li 358 506 2017 10.1126/science.aam6014 Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506-510 (2017). 

  48. Nat. Mater. KJ Harry 13 69 2014 10.1038/nmat3793 Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69-73 (2014). 

  49. Def. Diff. Forum O Wieland 194-199 35 2001 10.4028/www.scientific.net/DDF.194-199.35 Wieland, O. & Carstanjen, H. D. Measurement of the low-temperature self-diffusivity of lithium by elastic recoil detection analysis. Def. Diff. Forum 194-199, 35-41 (2001). 

  50. Science DY Khang 311 208 2006 10.1126/science.1121401 Khang, D. Y., Jiang, H. Q., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208-212 (2006). 

  51. J. Mech. Phys. Solids ZY Huang 53 2101 2005 10.1016/j.jmps.2005.03.007 Huang, Z. Y., Hong, W. & Suo, Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101-2118 (2005). 

  52. J. Appl. Phys. J Song 103 014303 2008 10.1063/1.2828050 Song, J. et al. An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008). 

  53. Adv. Energy Mater. C Yu 2 68 2012 10.1002/aenm.201100634 Yu, C. et al. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Adv. Energy Mater. 2, 68-73 (2012). 

  54. Proc. Natl Acad. Sci. USA H Jiang 104 15607 2007 10.1073/pnas.0702927104 Jiang, H. et al. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl Acad. Sci. USA 104, 15607-15612 (2007). 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로