최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature energy, v.3 no.3, 2018년, pp.227 - 235
Wang, Xu (School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA) , Zeng, Wei (School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA) , Hong, Liang (Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China) , Xu, Wenwen (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan, China) , Yang, Haokai (Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA) , Wang, Fan (School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA) , Duan, Huigao (School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA) , Tang, Ming (Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA) , Jiang, Hanqing (State K)
Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendri...
Energy Environ. Sci. A Zhamu 5 5701 2012 10.1039/C2EE02911A Zhamu, A. et al. Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 5, 5701-5707 (2012).
J. Phys. Chem. Lett. M Safari 5 3486 2014 10.1021/jz5018202 Safari, M., Adams, B. & Nazar, L. Kinetics of oxygen reduction in aprotic Li-O2 cells: a model-based study. J. Phys. Chem. Lett. 5, 3486-3491 (2014).
Nat. Nanotech. S Kim 9 306 2014 10.1038/nnano.2014.47 Kim, S. et al. All-water-based electron-beam lithography using silk as a resist. Nat. Nanotech. 9, 306-310 (2014).
J. Phys. Chem. Lett. S Dong 5 615 2014 10.1021/jz402755b Dong, S. et al. Insight into enhanced cycling performance of Li-O2 batteries based on binary CoSe2/CoO nanocomposite electrodes. J. Phys. Chem. Lett. 5, 615-621 (2014).
Nat. Energy P Albertus 3 16 2018 10.1038/s41560-017-0047-2 Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16-21 (2018).
10.1149/1.2055116 Hirai, T., Yoshimatsu, I. & Yamaki, J. i. Effect of additives on lithium cycling efficiency. J. Electrochem. Soc. 141, 2300-2305 (1994).
J. Electrochem. Soc. D Aurbach 143 3809 1996 10.1149/1.1837300 Aurbach, D., Markovsky, B., Shechter, A., Ein-Eli, Y. & Cohen, H. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 143, 3809-3820 (1996).
J. Power Sources D Aurbach 54 76 1995 10.1016/0378-7753(94)02044-4 Aurbach, D. et al. Recent studies of the lithium-liquid electrolyte interface. Electrochemical, morphological and spectral studies of a few important systems. J. Power Sources 54, 76-84 (1995).
Langmuir A Schechter 15 3334 1999 10.1021/la981048h Schechter, A., Aurbach, D. & Cohen, H. X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 15, 3334-3342 (1999).
Energy Environ. Sci. W Xu 7 513 2014 10.1039/C3EE40795K Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513-537 (2014).
Angew. Chem. Int. Ed. R Murugan 46 7778 2007 10.1002/anie.200701144 Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778-7781 (2007).
J. Power Sources KH Kim 196 764 2011 10.1016/j.jpowsour.2010.07.073 Kim, K. H. et al. Characterization of the interface between LiCoO2 and Li7 La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764-767 (2011).
Electrochem. Commun. L Gireaud 8 1639 2006 10.1016/j.elecom.2006.07.037 Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B. & Tarascon, J.-M. Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochem. Commun. 8, 1639-1649 (2006).
J. Phys. Chem. C MZ Mayers 116 26214 2012 10.1021/jp309321w Mayers, M. Z., Kaminski, J. W. & Miller, T. F.III. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J. Phys. Chem. C 116, 26214-26221 (2012).
Nano Lett. K Yan 14 6016 2014 10.1021/nl503125u Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016-6022 (2014).
Nat. Nanotech. G Zheng 9 618 2014 10.1038/nnano.2014.152 Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618-623 (2014).
J. Power Sources H Lee 284 103 2015 10.1016/j.jpowsour.2015.03.004 Lee, H., Lee, D. J., Kim, Y.-J., Park, J.-K. & Kim, H.-T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103-108 (2015).
10.1038/nenergy.2016.114 Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).
Angew. Chem. Int. Ed. S Choudhury 56 13070 2017 10.1002/anie.201707754 Choudhury, S. et al. Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem. Int. Ed. 56, 13070-13077 (2017).
Nat. Energy K Yan 1 16010 2016 10.1038/nenergy.2016.10 Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).
10.1038/ncomms10992 Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).
Nat. Nanotech. D Lin 11 626 2016 10.1038/nnano.2016.32 Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626-632 2016).
Nano Lett. LL Lu 16 4431 2016 10.1021/acs.nanolett.6b01581 Lu, L.-L. et al. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 16, 4431-4437 (2016).
10.1038/ncomms9058 Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).
Adv. Mater. Q Yun 28 6932 2016 10.1002/adma.201601409 Yun, Q. et al. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932-6939 (2016).
Adv. Mater. Y Guo 29 1700007 2017 10.1002/adma.201700007 Guo, Y., Li, H. & Zhai, T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29, 1700007 (2017).
Nat. Nanotech. D Lin 12 194 2017 10.1038/nnano.2017.16 Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194-206 (2017).
J. Electrochem. Soc. C Monroe 152 A396 2005 10.1149/1.1850854 Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396-A404 (2005).
Phys. Rev. Lett. Z Ahmad 119 056003 2017 10.1103/PhysRevLett.119.056003 Ahmad, Z. & Viswanathan, V. Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119, 056003 (2017).
Prog. Surf. Sci. E Chason 88 103 2013 10.1016/j.progsurf.2013.02.002 Chason, E., Jadhav, N., Pei, F., Buchovecky, E. & Bower, A. Growth of whiskers from Sn surfaces: driving forces and growth mechanisms. Prog. Surf. Sci. 88, 103-131 (2013).
J. Electrochem. Soc. E Chason 160 D3285 2013 10.1149/2.048312jes Chason, E. et al. Understanding residual stress in electrodeposited Cu thin films. J. Electrochem. Soc. 160, D3285-D3289 (2013).
Phys. Rev. Lett. JW Shin 103 056102 2009 10.1103/PhysRevLett.103.056102 Shin, J. W. & Chason, E. Compressive stress generation in Sn thin films and the role of grain boundary diffusion. Phys. Rev. Lett. 103, 056102 (2009).
10.1038/ncomms8436 Li, W. Y. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).
Nat. Commun. JF Qian 6 6362 2015 10.1038/ncomms7362 Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
J. Appl. Polym. Sci. Z Wang 131 2014 10.1002/app.41029 Wang, Z., Volinsky, A. A. & Gallant, N. D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 131, 41050 (2014).
James, A. M. & Lord, M. P. Macmillan’s Chemical and Physical Data (Macmillan, London, 1992).
Proc. Natl Acad. Sci. USA C Xu 114 57 2017 10.1073/pnas.1615733114 Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V. & Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl Acad. Sci. USA 114, 57-61 (2017).
J. Power Sources J Yamaki 74 219 1998 10.1016/S0378-7753(98)00067-6 Yamaki, J. et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74, 219-227 (1998).
Energy Environ. Sci. P Bai 9 3221 2016 10.1039/C6EE01674J Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221-3229 (2016).
J. Power Sources J Steiger 261 112 2014 10.1016/j.jpowsour.2014.03.029 Steiger, J., Kramer, D. & Monig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112-119 (2014).
Philos. Mag. HJS Sand 1 45 1901 10.1080/14786440109462590 Sand, H. J. S. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Philos. Mag. 1, 45-79 (1901).
Acta Mater. P Sarobol 61 1991 2013 10.1016/j.actamat.2012.12.019 Sarobol, P., Blendell, J. E. & Handwerker, C. A. Whisker and hillock growth via coupled localized Coble creep, grain boundary sliding, and shear induced grain boundary migration. Acta Mater. 61, 1991-2003 (2013).
Thin Solid Films R Abermann 129 71 1985 10.1016/0040-6090(85)90096-3 Abermann, R. & Koch, R. The internal-stress in thin silver, copper and gold-films. Thin Solid Films 129, 71-78 (1985).
Acta Mater. F Spaepen 48 31 2000 10.1016/S1359-6454(99)00286-4 Spaepen, F. Interfaces and stresses in thin films. Acta Mater. 48, 31-42 (2000).
Phys. Rev. Lett. E Chason 88 156103 2002 10.1103/PhysRevLett.88.156103 Chason, E., Sheldon, B. W., Freund, L. B., Floro, J. A. & Hearne, S. J. Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002).
Science Y Li 358 506 2017 10.1126/science.aam6014 Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506-510 (2017).
Nat. Mater. KJ Harry 13 69 2014 10.1038/nmat3793 Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69-73 (2014).
Def. Diff. Forum O Wieland 194-199 35 2001 10.4028/www.scientific.net/DDF.194-199.35 Wieland, O. & Carstanjen, H. D. Measurement of the low-temperature self-diffusivity of lithium by elastic recoil detection analysis. Def. Diff. Forum 194-199, 35-41 (2001).
Science DY Khang 311 208 2006 10.1126/science.1121401 Khang, D. Y., Jiang, H. Q., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208-212 (2006).
J. Mech. Phys. Solids ZY Huang 53 2101 2005 10.1016/j.jmps.2005.03.007 Huang, Z. Y., Hong, W. & Suo, Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101-2118 (2005).
J. Appl. Phys. J Song 103 014303 2008 10.1063/1.2828050 Song, J. et al. An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008).
Adv. Energy Mater. C Yu 2 68 2012 10.1002/aenm.201100634 Yu, C. et al. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Adv. Energy Mater. 2, 68-73 (2012).
Proc. Natl Acad. Sci. USA H Jiang 104 15607 2007 10.1073/pnas.0702927104 Jiang, H. et al. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl Acad. Sci. USA 104, 15607-15612 (2007).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.