최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Materials testing : materials and components, technology and application, v.60 no.2, 2018년, pp.163 - 172
Lee, Sungkyu (Yongin) , Jung, Bongjin (Hwasung) , Lee, Nayeon (Hwasung) , Nam, Wonjun (Hwasung) , Lee, Seung-Jong (Yongin, South Korea) , Yun, Yongseung (Yongin, South Korea)
KurzfassungDie Aschefusionstemperatur bestimmt die Eignung von Kohle für den Prozess der Flugstromvergasung. Hierfür wurde eine indonesische Probe der Sehwa-Kohle verwendet und ihre sauren Asche- und Schlackeinhalte mittels Röntgenfluoureszenz, Röntgendiffraktometrie und Rasterelektronenmikroskopie mit energiedispersiver Spektroskopie sowie induktiv gekoppelten Verfahren der Emissionsspektroskopie charakterisiert. Zur Abschätzung der Umweltfolgen wurden außerdem für die ICP-OES-Analyse eine entsprechende Lösung hergestellt. Die experimentellen Daten werden anhand der Aschefusionstemperatur erklärt sowie anhand der thermodynamischen Software und Datenbasis FactSage®, um die thermodynamischen Flüssigkeitseigenschaften der Kohleaschen zu verstehen. Das Kohleschlacke-Verhalten innerhalb des Kohlevergasers bzw. der Brennkammer machte die Optimierung der Betriebsbedingungen für eine nachfolgende schwache Verschlackung notwendig. Die bisher angewandte Kohlevergasungstemperatur verursachte einen ungeeigneten Anteil an Flüssigkeit bei 1200 bis 1300 °C und 19,7 bis 20,1 bar. Die metallische elementweise Analyse der Zusammensetzung mittels ICP-OES an der Lösung schloss von daher die Möglichkeit einer sekundären Umweltverschmutzung durch die abgeführte Schlacke aus. Der vorliegende Beitrag setzt die bereits veröffentlichten Studien der physikochemischen Charakterisierung des Schlackeabfalls (SiO2-Al2O3-TiO2-Fe2O3-CaO-MgO-Na2O-K2O-P2O5-MnO-SO3) aus Kohlevergasungsanlagen fort, die mit den Ergebnissen der thermodynamischen Modellierung mittels FactSage®fort. Darüber hinaus wurde eine ähnliche experimentelle Prozedur wie in den bereits veröffentlichten Studien angewandt, um das Ascheumwandlungs- und Verschlackungsverhalten von sauren Kohlebeschickungen zu vergleichen.
AbstractAsh fusion temperature determines suitability of coal for the entrained flow gasification/combustion process. For this, an Indonesian “Sehwa” coal sample and its acidic ash and slag constituents have been comprehensibly characterized via X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and inductively coupled plasma optical emission spectrometry (ICP-OES) methods. For assessment of environmental impact, leachate solution was also prepared from the discharged slag for ICP-OES analysis. The experimental data were comprehensively explained by ash fusion temperature and FactSage®thermochemical software and databases for understanding the thermodynamic fluidity properties of the coal ashes. More specifically, coal slagging behavior inside of the coal gasifier/combustor necessitated optimization of operational condition for subsequent mild slagging. The currently used coal gasification operation temperature range caused insufficient fraction of liquid available at 1200 to 1300 °C (19.7-20.1 bar). The metallic element-wise compositional analysis result via ICP-OES performed on the leachate solution therefrom excluded possibility of secondary environmental pollution from the discharged slag. This contribution continues the already published studies of the physicochemical characterization of slag waste from coal gasification syngas plants supplemented with FactSage®thermodynamic modeling results of coal gasification slag (SiO2-Al2O3-TiO2-Fe2O3-CaO-MgO-Na2O-K2O-P2O5-MnO-SO3). Besides, essentially similar experimental procedure to that employed in the already published studies was used to compare ash transformation and slagging behavior of the acidic coal feedstock.
Giuffrida, A., Romano, M.C., Lozza, G.. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up. Energy : technologies, resources, reserves, demands, impact, conservation, management, policy, vol.53, 221-229.
Cormos, C.C.. Hydrogen and power co-generation based on coal and biomass/solid wastes co-gasification with carbon capture and storage. International journal of hydrogen energy, vol.37, no.7, 5637-5648.
http://www.flyash.info/2005/7ain.pdf, consulted February 26, 2016
www.waseda.jp/folaw/icl/./A04408055-00-034020047.pdf, consulted May 30, 2016
Roessler, J.G., Olivera, F.D., Wasman, S.J., Townsend, T.G., McVay, M.C., Ferraro, C.C., Blaisi, N.I.. Construction material properties of slag from the high temperature arc gasification of municipal solid waste. Waste management, vol.52, 169-179.
Jung, Bongjin, Lee, Seung-Jong, Lee, Sungkyu, Lee, Nayeon, Nam, Wonjun, Yun, Yongseung. Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material. Materials testing : materials and components, technology and application, vol.59, no.9, 783-789.
IGCC Solids Disposal and Utilisation (Final Report for ANLEC project 5-0710-0065) Ilyushechkin A. Y. 2012
van Dyk, J.C.. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources. Minerals engineering, vol.19, no.3, 280-286.
Physical Chemistry of High Temperature Technology Turkdogan E. T. 1980
Wang, Ping, Massoudi, Mehrdad. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions. Energies, vol.6, no.2, 784-806.
www.flyash.info/2011/058-Ninomiya-2011.pdf, consulted October 7, 2016
LI, Hanxu, Yoshihiko, Ninomiya, DONG, Zhongbing, ZHANG, Mingxu.
Application of the FactSage to Predict the Ash Melting Behavior in Reducing Conditions
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.