$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Metamaterial superconductors 원문보기

Nanophotonics, v.7 no.5, 2018년, pp.795 - 818  

Smolyaninov, Igor I. (Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA) ,  Smolyaninova, Vera N. (Department of Physics Astronomy and Geosciences, Towson University, 8000 York Road, Towson, MD 21252, USA)

Abstract

AbstractSearching for natural materials exhibiting larger electron-electron interactions constitutes a traditional approach to high-temperature superconductivity research. Very recently, we pointed out that the newly developed field of electromagnetic metamaterials deals with the somewhat related task of dielectric response engineering on a sub-100-nm scale. Considerable enhancement of the electron-electron interaction may be expected in such metamaterial scenarios as in epsilon near-zero (ENZ) and hyperbolic metamaterials. In both cases, dielectric function may become small and negative in substantial portions of the relevant four-momentum space, leading to enhancement of the electron pairing interaction. This approach has been verified in experiments with aluminum-based metamaterials. Metamaterial superconductor withTc=3.9 K have been fabricated, which is three times that of pure aluminum (Tc=1.2 K), which opens up new possibilities to improve theTcof other simple superconductors considerably. Taking advantage of the demonstrated success of this approach, the critical temperature of hypothetical niobium, MgB2- and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial, the projectedTcappears to reach ~250 K.

주제어

참고문헌 (50)

  1. Controlling electromagnetic fields 1780 Science 312 2006 10.1126/science.1125907 

  2. Achieving transparency with plasmonic and metamaterial coatings 016623 Phys Rev E 72 2005 10.1103/PhysRevE.72.016623 

  3. Asymmetric avalanches in the condensate of a Zeeman-limited superconductor 184519 Phys Rev B 90 2014 10.1103/PhysRevB.90.184519 

  4. Introduction to solid state physics. 2004 

  5. Thin multilayer aluminum structures for superconducting devices 877 Instrum Exp Tech 52 2009 10.1134/S0020441209060220 

  6. Electrodynamics of high-Tc superconductors 721 Rev Mod Phys 77 2005 10.1103/RevModPhys.77.721 

  7. On surface superconductivity 101 Phys Lett 13 1964 10.1016/0031-9163(64)90672-9 

  8. Thermally-formed oxide on aluminum and magnesium 1347 Mater Trans 47 2006 10.2320/matertrans.47.1347 

  9. Review of superconducting properties of MgB2 11 Supercond Sci Technol 14 2001 

  10. Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials 7321 Sci Rep 4 2014 10.1038/srep07321 

  11. Is there a metamaterial route to high temperature superconductivity? 479635 Adv Cond Matt Phys 2014 2014 

  12. Optical hyperlens: far-field imaging beyond the diffraction limit 8247 Opt Express 14 2006 10.1364/OE.14.008247 

  13. Solid state physics 1976 

  14. The description of superconductivity in terms of dielectric response function 79 J Low Temp Phys 10 1973 10.1007/BF00655243 

  15. Scale-free structural organization of oxygen interstitials in La2CuO4+y 841 Nature 466 2010 10.1038/nature09260 

  16. Implementation of a quantum metamaterial using superconducting qubits 5146 Nat Commun 5 2014 10.1038/ncomms6146 

  17. Design and manufacturability tradeoffs in unidirectional and bidirectional standard cell layouts in 14 nm node 83270K Proc SPIE 8327 2012 10.1117/12.916104 

  18. Possibility of synthesizing an organic superconductor A1416 Phys Rev 134 1964 10.1103/PhysRev.134.A1416 

  19. Using metamaterial nanoengineering to triple the superconducting critical temperature of bulk aluminum 15777 Sci Rep 5 2015 10.1038/srep15777 

  20. Enhancement of critical temperature in fractal metamaterial superconductors 20 Physica C 535 2017 10.1016/j.physc.2017.03.002 

  21. Nobel Lecture: on superconductivity and superfluidity 981 Rev Mod Phys 76 2004 

  22. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared 1099 Appl Opt 22 1983 10.1364/AO.22.001099 

  23. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system 73 Nature 525 2015 10.1038/nature14964 

  24. Emergent phenomena in correlated matter 13.13 2013 

  25. Type-1.5 superconductivity 117001 Phys Rev Lett 102 2009 10.1103/PhysRevLett.102.117001 

  26. Creating better superconductors by periodic nanopatterning 010 SciPost Phys 3 2017 10.21468/SciPostPhys.3.2.010 

  27. Quantum topological transition in hyperbolic metamaterials based on high Tc superconductors 305701 J Phys Condens Matter 26 2014 10.1088/0953-8984/26/30/305701 

  28. Superconducting thin films 74 Nature 142 1938 10.1038/142074a0 

  29. Permittivity evaluation of multilayered hyperbolic metamaterials: ellipsometry vs. reflectometry 103 J Appl Phys 117 2015 

  30. High temperature superconductivity in a hyperbolic geometry of complex matter from nanoscale to mesoscopic scale 627 J Supercond Nov Magn 29 2016 10.1007/s10948-015-3326-9 

  31. Optical constants of single-crystal gray tin in the infrared A191 Phys Rev 135 1964 10.1103/PhysRev.135.A191 

  32. The effect of grain and particle size on the microwave properties of barium titanate 3288 J Appl Phys 83 1998 10.1063/1.367097 

  33. What superconducts in sulfur hydrides under pressure, and why 060511 Phys Rev B 91 2015 10.1103/PhysRevB.91.060511 

  34. High-temperature superconductivity: the benefit of fractal dirt 825 Nature 466 2010 10.1038/466825a 

  35. Theoretical modeling of critical temperature increase in metamaterial superconductors 184510 Phys Rev B 93 2016 10.1103/PhysRevB.93.184510 

  36. Broadband dielectric characterization of aluminum oxide 101 J Micro Elect Pack 5 2008 

  37. Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media 498 J Opt Soc Am B 23 2006 10.1364/JOSAB.23.000498 

  38. Effective medium theory 1999 

  39. Pursuing near-zero response 286 Science 340 2013 10.1126/science.1235589 

  40. Nano-optics of surface plasmon-polaritons 131 Phys Rep 408 2005 10.1016/j.physrep.2004.11.001 

  41. Pseudodielectric functions of uniaxial materials in certain symmetry directions 468 J Opt Soc Am A 23 2006 10.1364/JOSAA.23.000468 

  42. Polaritons: the electromagnetic modes of media 817 Rep Prog Phys 37 1974 10.1088/0034-4885/37/7/001 

  43. Negative magnetoresistance in fractal Pb thin films on Si 113109 Appl Phys Lett 90 2007 10.1063/1.2712511 

  44. The physics and applications of superconducting metamaterials 024001 J Opt 13 2011 10.1088/2040-8978/13/2/024001 

  45. Plasmon mechanism of high temperature superconductivity in cuprate metal-oxide compounds 425 J Exp Theor Phys 76 1993 

  46. Niobium nitride/aluminium nitride superconductor/insulator multilayers and tunnel junctions 3609 IEEE Trans Appl Supercond 7 1997 10.1109/77.622186 

  47. Metamaterial superconductors 094501 Phys Rev B 91 2015 10.1103/PhysRevB.91.094501 

  48. Superconductivity in granular aluminum films 444 Phys Rev 168 1968 10.1103/PhysRev.168.444 

  49. Enhanced superconductivity in aluminum-based hyperbolic metamaterials 34140 Sci Rep 6 2016 10.1038/srep34140 

  50. Critical temperature of smart meta-superconducting MgB2 1405 J Supercond Nov Magn 30 2017 10.1007/s10948-016-3963-7 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로