$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A feasibility study of Organic Rankine Cycle (ORC) power generation using thermal and cryogenic waste energy on board an LNG passenger vessel 원문보기

International journal of energy research, v.42 no.9, 2018년, pp.3121 - 3142  

Tsougranis, Emmanouil‐Loizos (School of Marine Science and Technology, Marine Engineering, Newcastle University, Newcastle upon Tyne, UK) ,  Wu, Dawei (School of Marine Science and Technology, Marine Engineering, Newcastle University, Newcastle upon Tyne, UK)

Abstract AI-Helper 아이콘AI-Helper

SummaryThis study develops a novel approach to reutilize cryogenic and thermal waste energy on a liquefied natural gas (LNG)‐powered passenger vessel. The waste energy is identified through a series of field tests of the LNG evaporation system and other important machinery systems, including t...

주제어

참고문헌 (33)

  1. IMO ( 2016 ), Available at: http://www.imo.org/en/OurWork/environment/pollutionprevention/airpollution/pages/air‐pollution.aspx 

  2. Yuksek , E. and Mirmobin , P. ( 2015 ) Waste heat utilization of main propulsion engine jacket water in marine application . Brussels. 

  3. Ahlgren F , Mondejar M , Genrup M , Thern M . Waste heat recovery in a cruise vessel in the Baltic Sea by using an Organic Rankine Cycle: a case study . J Eng Gas Turbines Power . 2015 ; 138 ( 1 ): 011702 . 

  4. Franco A , Casarosa C . Thermodynamic and heat transfer analysis of LNG energy recovery for power production . J Phys Conf Ser . 2014 ; 547 : 012012 . 

  5. Chen H , Goswami D , Stefanakos E . A review of thermodynamic cycles and working fluids for the conversion of low‐grade heat . Renew Sustain Energy Rev . 2010 ; 14 ( 9 ): 3059 ‐ 3067 . 

  6. Kim K , Oh J , Kim S . Analysis of regenerative power cycle utilizing low‐grade heat source and LNG cold energy . Min Metall Mech Eng . 2013 ; 1 ( 5 ): 291 ‐ 295 . 

  7. Kim M . Fundamental process and system design issues in CO 2 vapor compression systems . Prog Energy Combust Sci . 2004 ; 30 ( 2 ): 119 ‐ 174 . 

  8. Mago P , Chamra L , Srinivasan K , Somayaji C . An examination of regenerative organic Rankine cycles using dry fluids . Appl Therm Eng . 2008 ; 28 ( 8–9 ): 998 ‐ 1007 . 

  9. The Wärtsilä gas valve unit enclosed design GVU‐ED for marine applications ( 2017 ) [Online]. Available at: https://www.wartsila.com/twentyfour7/in‐detail/the‐wartsila‐gas‐valve‐unit‐enclosed‐design‐gvu‐ed‐for‐marine‐applications(2017). 

  10. Zoglia , P . ( 2013 ). Gas storage and supply systems . Wartsila 

  11. Software , S. ( 2017 ) LMS Imagine.Lab Amesim: Siemens PLM Software . Available at: https://www.plm.automation.siemens.com/en/products/lms/imagine‐lab/amesim/. 

  12. Lee H , Kim K . Energy and exergy analyses of a combined power cycle using the Organic Rankine Cycle and the cold energy of liquefied natural gas . Entropy . 2015 ; 17 ( 9 ): 6412 ‐ 6432 . 

  13. Frangopoulos C . Exergy, Energy System Analysis, and Optimization . Oxford, Uinited Kingdom : Eolss Publishers Co. Ltd. ; 2009 . 

  14. El‐Emam R , Dincer I . Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle . Appl Therm Eng . 2013 ; 59 ( 1–2 ): 435 ‐ 444 . 

  15. Grljušić M , Medica V , Radica G . Calculation of efficiencies of a ship power plant operating with waste heat recovery through combined heat and power production . Energies . 2015 ; 8 ( 5 ): 4273 ‐ 4299 . 

  16. Kakaç S , Liu H , Pramuanjaroenkij A . Heat Exchangers . Hoboken : CRC Press ; 2012 . 

  17. Couper JR , Roy Penney W , Fair JR , Walas SM . Chemical Process Equipment: Selection and Design . 2nd ed. Elsevier Inc. ; 2005 . 

  18. Tsatsaronis G , Cziesla F . Exergy, Energy System Analysis and Optimization . ©Encyclopedia of Life Support Systems(EOLSS) . 1st edn. [Online] ed. ; 2017 Available at: https://www.eolss.net/samplechapters/C08/E3‐19‐01‐02.pdf. 

  19. Kern D . Process Heat Transfer . Auckland : Mac Graw Hill ; 1983 . 

  20. Engineering page > heat exchangers > typical fouling factors ( 2017 ) [Online]. 2017. Available at: http://www.engineeringpage.com/technology/thermal/fouling_factors.html 

  21. Van Der Geld C , Ganzevles F , Simons C , Weitz F . Geometry adaptations to improve the performance of compact polymer heat exchangers . Trans IChemE: Part A . 2001 ; 79 : 357 ‐ 362 . 

  22. Harris C , Kelly K , Wang T , McCandless A , Motakef S . Fabrication, modeling and testing of micro‐cross flow heat exchangers . J Microelectromech Syst . 2002 ; 11 : 726 ‐ 735 . 

  23. Saman W , Alizadeh S . Modeling and performance analysis of a cross‐flow type plate heat exchanger for dehumidification/cooling . Solar Energy . 2001 ; 70 ( 4 ): 361 ‐ 372 . 

  24. Deronzier JC , Bertolini G . Plate heat exchanger in liquid crystal polymer . Appl Therm Eng . 1997 ; 17 : 799 ‐ 808 . 

  25. Macchi E , Astolfi M . Organic Rankine cycle (ORC) power systems . 1st ed. Elsevier Ltd ; 2016 : 70 ‐ 75 . 

  26. Imran , M. , Usman , M. , Lee , D. , and Park , B. ( 2015 ) Thermoeconomic analysis of Organic Rankine Cycle using zeotropic mixtures . Brussels. 

  27. Heberle F , Brüggemann D . Thermo‐economic evaluation of Organic Rankine Cycles for geothermal power generation using zeotropic mixtures . Energies . 2015 ; 8 ( 3 ): 2097 ‐ 2124 . 

  28. Imran M , Usman M , Park B , Yang Y . Comparative assessment of Organic Rankine Cycle integration for low temperature geothermal heat source applications . Energy . 2016 ; 102 : 473 ‐ 490 . 

  29. Yang F , Zhang H , Song S , Bei C , Wang H , Wang E . Thermoeconomic multi‐objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine . Energy . 2015 ; 93 : 2208 ‐ 2228 . 

  30. Han Z , Li P , Han X , Mei Z , Wang Z . Thermo‐economic performance analysis of a regenerative superheating Organic Rankine Cycle for waste heat recovery . Energies . 2017 ; 10 ( 10 ): 1593 . 

  31. Turton R , Bailie R , Whiting W , Shaeiwitz J . Analysis, Synthesis, and Design of Chemical Processes . Estados Unidos : Pearson Education, Inc. ; 2009 . 

  32. Costall A , Gonzalez Hernandez A , Newton P , Martinez‐Botas R . Design methodology for radial turbo expanders in mobile organic Rankine cycle applications . Appl Energy . 2015 ; 157 : 729 ‐ 743 . 

  33. Japan liquefied natural gas import price (monthly, USD per million Btu) ( 2017 ). Available at: http://ycharts.com/indicators/japan_liquefied_natural_gas_import_price. 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로