$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

LC‐MS based metabolic and metabonomic studies of Panax ginseng 원문보기

Phytochemical analysis : PCA, v.29 no.4, 2018년, pp.331 - 340  

Wu, Wei (Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China) ,  Jiao, Chuanxi (Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China) ,  Li, Hui (Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China) ,  Ma, Yue (Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China) ,  Jiao, Lili (Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China) ,  Liu, Shuying (Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China)

Abstract AI-Helper 아이콘AI-Helper

AbstractIntroductionPanax ginseng has received much attention as a valuable health supplement with medicinal potential. Its chemical diversity and multiple pharmacological properties call for comprehensive methods to better understand the effects of ginseng and ginsenosides. Liquid chromatography...

주제어

참고문헌 (127)

  1. Attele AS , Wu JA , Yuan C . Ginseng pharmacology: Multiple constituents and multiple actions . Biochem Pharmacol . 1999 ; 58 : 1685 ‐ 1693 . 

  2. Chen C , Chiou W , Zhang J . Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium . Acta Pharmacol Sin . 2008 ; 29 : 1103 ‐ 1108 . 

  3. Jia L , Zhao Y . Current evaluation of the millennium phytomedicine – ginseng (I): etymology, pharmacognosy, phytochemistry, market and regulations . Curr Med Chem . 2009 ; 16 : 2475 ‐ 2484 . 

  4. Zhao HF , Li Q , Li Y . Long‐term ginsenoside administration prevents memory loss in aged female C57BL/6J mice by modulating the redox status and up‐regulating the plasticity‐related proteins in hippocampus . Neuroscience . 2011 ; 183 : 189 ‐ 202 . 

  5. Wang Y , Kan H , Yin Y , et al. Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice . Pharmacol Biochem Behav . 2014 ; 120 : 73 ‐ 81 . 

  6. Lu JM , Yao Q , Chen C . Ginseng compounds: an update on their molecular mechanisms and medical applications . Curr Vasc Pharmacol . 2009 ; 7 : 293 ‐ 302 . 

  7. Angelova N , Kong HW , van der Heijden R , et al. Recent methodology in the phytochemical analysis of ginseng . Phytochem Anal . 2008 ; 19 : 2 ‐ 16 . 

  8. Seung‐Hoon B , Ok‐Nam B , Jeong HP . Recent Methodology in Ginseng Analysis . J Ginseng Res . 2012 ; 36 : 119 ‐ 134 . 

  9. Fuzzati N . Analysis methods of ginsenosides . J Chromatogr B . 2004 ; 812 : 119 ‐ 133 . 

  10. Chen XP , Lin YP , Hu YZ , Liu CX , Lan K , Jia W . Phytochemistry, metabolism, and metabolomics of ginseng . Chinese Herbal Medicines . 2015 ; 7 : 98 ‐ 108 . 

  11. Jia L , Zhao Y , Liang XJ . Current evaluation of the millennium phytomedicine‐ginseng (II): collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine . Curr Med Chem . 2009 ; 16 : 2924 ‐ 2942 . 

  12. Cui M , Song F , Zhou Y , Liu Z , Liu S . Rapid identification of saponins in plant extracts by electrospray ionization multi‐stage tandem mass spectrometry and liquid chromatography/tandem mass spectrometry . Rapid Commun Mass Spectrom . 2000 ; 14 : 1280 ‐ 1286 . 

  13. Wang Y , Pan JY , Xiao XY , Lin RC , Cheng YY . Simultaneous determination of ginsenosides in Panax ginseng with different growth ages using high‐performance liquid chromatography‐mass spectrometry . Phytochem Anal . 2006 ; 17 : 424 ‐ 430 . 

  14. Shi W , Wang Y , Li J , Zhang H , Ding L . Investigation of ginsenosides in different parts and ages of Panax ginseng . Food Chem . 2007 ; 102 : 664 ‐ 668 . 

  15. Wang HP , Zhang YB , Yang XW , et al. High‐performance liquid chromatography with diode array detector and electrospray ionization ion trap time‐of‐flight tandem mass spectrometry to evaluate ginseng roots and rhizomes from different regions . Molecules . 2016 ; 21 : 603 . 

  16. Wang HP , Zhang YB , Yang XW , Zhao DQ , Wang YP . Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC‐DAD‐QTOF‐MS/MS and simultaneous determination of 19 ginsenosides by HPLC‐ESI‐MS . J Ginseng Res . 2016 ; 40 : 382 ‐ 394 . 

  17. Li SL , Lai SF , Song JZ , et al. Decocting‐induced chemical transformations and global quality of Du‐Shen‐Tang, the decoction of ginseng evaluated by UPLC‐Q‐TOF‐MS/MS based chemical profiling approach . J Pharm Biomed Anal . 2010 ; 53 : 946 ‐ 957 . 

  18. Chen J , Guo X , Song Y , Zhao M , Tu P , Jiang Y . MRM‐based strategy for the homolog‐focused detection of minor ginsenosides from notoginseng total saponins by ultra‐performance liquid chromatography coupled with hybrid triple quadrupole‐linear ion trap mass spectrometry . RSC Adv . 2016 ; 6 : 96376 ‐ 96388 . 

  19. Baek SH , Bae ON , Park JH . Recent methodology in ginseng analysis . J Ginseng Res . 2012 ; 36 : 119 ‐ 134 . 

  20. Hasegawa H , Sung JH , Matsumiya S , Uchiyama M . Main ginseng saponin metabolites formed by intestinal bacteria . Planta Med . 1996 ; 62 : 453 ‐ 457 . 

  21. Wang CZ , Yu C , Wen XD , et al. American ginseng attenuates colitis associated colon carcinogenesis in mice: impact on gut Microbiota and Metabolomics . Cancer Prev Res . 2016 ; 9 : 803 ‐ 811 . 

  22. Zhou SS , Xu J , He Z , et al. Gut microbiota‐involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction . Sci Rep . 2016 ; 6 : 22474 . 

  23. Wan JY , Wang CZ , Zhang QH , et al. Significant difference in active metabolite levels of ginseng in humans consuming Asian or Western diet: the link of enteric microbiota . Biomed Chromatogr . 2017 ; 31 : e3851 . https://doi.org/10.1002/bmc.3851 

  24. Wang Y , Wang J , Yao M , et al. Metabonomics study on the effects of the ginsenoside Rg3 in a beta‐cyclodextrin‐based formulation on tumor‐bearing rats by a fully automatic hydrophilic interaction/reversed‐phase column‐switching HPLC‐ESI‐MS approach . Anal Chem . 2008 ; 80 : 4680 ‐ 4688 . 

  25. Niu J , Pi Z , Yue H , et al. Effect of 20( S )‐ginsenoside Rg3 on streptozotocin‐induced experimental type 2 diabetic rats: a urinary metabonomics study by rapid‐resolution liquid chromatography/mass spectrometry . Rapid Commun Mass Spectrom . 2012 ; 26 : 2683 ‐ 2689 . 

  26. Luan H , Wang X , Cai Z . Mass spectrometry‐based metabolomics: targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders . Mass Spectrom Rev . 2017 ; 1 ‐ 12 . https://doi.org/10.1002/mas.21553 

  27. Qi LW , Wang CZ , Du GJ , Zhang ZY , Calway T , Yuan CS . Metabolism of ginseng and its interactions with drugs . Curr Drug Metab . 2011 ; 12 : 818 ‐ 822 . 

  28. Yue PYK , Mak NK , Cheng YK , et al. Pharmacogenomics and the Yin/Yang actions of ginseng: anti‐tumor, angiomodulating and steroid‐like activities of ginsenosides . Chinas Med . 2007 ; 2 : 6 . 

  29. Nicholson JK , Lindon JC , Holmes E . ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data . Xenobiotica . 1999 ; 29 : 1181 ‐ 1189 . 

  30. Wang Y , Liu S , Hu Y , Li P , Wan JB . Current state of the art of mass spectrometry‐based metabolomics studies – a review focusing on wide coverage, high throughput and easy identification . RSC Adv . 2015 ; 5 : 78728 ‐ 78737 . 

  31. Mushtaq MY , Choi YH , Verpoorte R , Wilson EG . Extraction for metabolomics: access to the metabolome . Phytochem Anal . 2014 ; 25 : 291 ‐ 306 . 

  32. Toh DF , New LS , Koh HL , Chan CY . Ultra‐high performance liquid chromatography/time‐of‐flight mass spectrometry (UHPLC/TOFMS) for time‐dependent profiling of raw and steamed Panax notoginseng . J Pharm Biomed Anal . 2010 ; 52 : 43 ‐ 50 . 

  33. Chinese Pharmacopoeia Commission . Pharmacopoeia of the People's Republic of China . 1 Beijing : Chinese Medical Science and Technology Press ; 2015 : 8 ‐ 10 . 

  34. Crighton E , Mullaney I , Trengove R , Bunce M , Maker G . The application of metabolomics for herbal medicine pharmacovigilance: a case study on ginseng . Essays Biochem . 2016 ; 60 : 429 ‐ 435 . 

  35. Lim W , Mudge KW , Vermeylen F . Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng ( Panax quinquefolium ) . J Agric Food Chem . 2005 ; 53 : 8498 ‐ 8505 . 

  36. You R , Guan Y , Li L . Metabonomics: a developing platform for better understanding Chinese herbal teas as a complementary therapy . Int J Food Sci Tech . 2017 ; 52 : 13 ‐ 21 . 

  37. Shon JC , Shin HS , Yong KS , Yoon YR , Shin H , Liu KH . Direct infusion MS‐based lipid profiling reveals the pharmacological effects of compound K‐reinforced ginsenosides in high‐fat diet induced obese mice . J Agric Food Chem . 2015 ; 63 : 2919 ‐ 2929 . 

  38. Liu Y , Zhang JW , Li W , et al. Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes . Toxicol Sci . 2006 ; 91 : 356 ‐ 364 . 

  39. Lai L , Hao H , Liu Y , et al. Characterization of pharmacokinetic profiles and metabolic pathways of 20(S)‐ginsenoside Rh1 in vivo and in vitro . Planta Med . 2009 ; 75 : 797 ‐ 802 . 

  40. Tawab MA , Bahr U , Karas M , Wurglics M , Schubertzsilavecz M . Degradation of ginsenosides in humans after oral administration . Drug Metab Dispos . 2003 ; 31 : 1065 ‐ 1071 . 

  41. Niu T , Smith DL , Yang Z , et al. Bioactivity and bioavailability of ginsenosides are dependent on the glycosidase activities of the A/J mouse intestinal microbiome defined by pyrosequencing . Pharm Res . 2013 ; 30 : 836 ‐ 846 . 

  42. Hao H , Lai L , Zheng C , et al. Microsomal cytochrome p450‐mediated metabolism of protopanaxatriol ginsenosides: metabolite profile, reaction phenotyping, and structure‐metabolism relationship . Drug Metab Dispos . 2010 ; 38 : 1731 ‐ 1739 . 

  43. Sun J , Wu W , Guo Y , Qin Q , Liu S . Pharmacokinetic study of ginsenoside Rc and simultaneous determination of its metabolites in rats using RRLC‐Q‐TOF‐MS . J Pharm Biomed Anal . 2014 ; 88 : 16 ‐ 21 . 

  44. Sun J , Wang G , Haitang X , Hao L , Guoyu P , Tucker I . Simultaneous rapid quantification of ginsenoside Rg1 and its secondary glycoside Rh1 and aglycone protopanaxatriol in rat plasma by liquid chromatography‐mass spectrometry after solid‐phase extraction . J Pharm Biomed Anal . 2005 ; 38 : 126 ‐ 132 . 

  45. Qian T , Jiang ZH , Cai Z . High‐performance liquid chromatography coupled with tandem mass spectrometry applied for metabolic study of ginsenoside Rb 1 on rat . Anal Biochem . 2006 ; 352 : 87 ‐ 96 . 

  46. Yang L , Deng Y , Xu S , Zeng X . In vivo pharmacokinetic and metabolism studies of ginsenoside Rd . J Chromatogr B . 2007 ; 854 : 77 ‐ 84 . 

  47. Liu Y , Xu S , Liu C , Su Z . In vivo metabolism study of ginsenoside Re in rat using high‐performance liquid chromatography coupled with tandem mass spectrometry . Anal Bioanal Chem . 2009 ; 395 : 1441 ‐ 1451 . 

  48. Liu Z , Li Y , Li X , Ruan CC , Wang LJ , Sun GZ . The effects of dynamic changes of malonyl ginsenosides on evaluation and quality control of Panax ginseng C.A. Meyer . J Pharm Biomed Anal . 2012 ; 64‐65 : 56 ‐ 63 . 

  49. Wu W , Song F , Guo D , et al. Mass spectrometry‐based approach in ginseng research: A promising way to metabolomics . Curr Anal Chem . 2012 ; 8 : 43 ‐ 44 . 

  50. Liu H , Yang J , Du F , et al. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats . Drug Metab Dispos . 2009 ; 37 : 2290 ‐ 2298 . 

  51. Kim EO , Cha KH , Lee EH , et al. Bioavailability of ginsenosides from white and red ginsengs in the simulated digestion model . J Agric Food Chem . 2014 ; 62 : 10055 ‐ 10063 . 

  52. He C , Ru F , Sun Y , et al. Simultaneous quantification of ginsenoside Rg1 and its metabolites by HPLC–MS/MS: Rg1 excretion in rat bile, urine and feces . Acta Pharmaceutica Sinica B . 2016 ; 6 : 593 ‐ 599 . 

  53. Lin M , Wei S , Wan G , Ding Y , Zhuang Y , Qi H . Ginsenoside Rg1 protects against transient focal cerebral ischemic injury and suppresses its systemic metabolic changes in cerabral injury rats . Acta Pharmaceutica Sinica B . 2015 ; 5 : 277 ‐ 284 . 

  54. Wang JR , Tong TT , Yau LF , et al. Characterization of oxygenated metabolites of ginsenoside Rb1 in plasma and urine of rat . J Agric Food Chem . 2016 ; 1026 : 75 ‐ 86 . 

  55. Kang A , Zhang S , Shan J , Di L . Gut microbiota‐mediated deglycosylation of ginsenoside Rb1 in rats: in vitro and in vivo insights from quantitative ultra‐performance liquid chromatography‐mass spectrometry analysis . Anal Methods . 2015 ; 7 : 6173 ‐ 6181 . 

  56. Joo KM , Lee JH , Jeon HY , et al. Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method . J Pharm Biomed Anal . 2010 ; 51 : 278 ‐ 283 . 

  57. Geng C , Wang CH , Hu H , et al. Development and validation of an UPLC‐Q/TOF‐MS assay for the quantitation of neopanaxadiol in beagle dog plasma: application to a pharmacokinetic study . Biomed Chromatogr . 2017 ; 31 : e3878 . 

  58. Zhu H , Shen H , Xu J , et al. Comparative study on intestinal metabolism and absorption in vivo of ginsenosides in sulphur‐fumigated and non‐fumigated ginseng by ultra performance liquid chromatography quadruple time‐of‐flight mass spectrometry based chemical profiling approach . Drug Test Anal . 2015 ; 7 : 320 ‐ 330 . 

  59. Wang X , Zhao T , Gao X , Mo D , Zhou M , Wei J . Simultaneous determination of 17 ginsenosides in rat urine by ultra performance liquid chromatography–mass spectrometry with solid‐phase extraction . Anal Chim Acta . 2007 ; 594 : 265 ‐ 273 . 

  60. Ma LY , Zhang YB , Zhou QL , Yang YF , Yang XW . Simultaneous determination of eight ginsenosides in rat plasma by liquid chromatography‐electrospray ionization tandem mass spectrometry: application to their pharmacokinetics . Molecules . 2015 ; 20 : 21597 ‐ 21608 . 

  61. Zhou QL , Zhu DN , Yang YF , Xu W , Yang XW . Simultaneous quantification of twenty‐one ginsenosides and their three aglycones in rat plasma by a developed UFLC‐MS/MS assay: application to a pharmacokinetic study of red ginseng . J Pharm Biomed Anal . 2017 ; 137 : 1 ‐ 12 . 

  62. Zhou D , Tong L , Wan M , et al. An LC‐MS method for simultaneous determination of nine ginsenosides in rat plasma and its application in pharmacokinetic study . Biomed Chromatogr . 2011 ; 25 : 720 ‐ 726 . 

  63. Li M , Guan Y , Liu N , et al. Brain concentration of ginsenosides and pharmacokinetics after oral administration of mountain‐cultivated ginseng . J Chin Chem Soc . 2017 ; 64 : 395 ‐ 403 . 

  64. Wang D , Liao PY , Zhu HT , et al. The processing of Panax notoginseng and the transformation of its saponin components . Food Chem . 2012 ; 132 : 1808 ‐ 1813 . 

  65. Shen W , Wei Y , Tang D , Jia X , Chen B . Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultra‐performance liquid chromatography/quadrupole–time‐of‐flight MS. J Ginseng Res . 2016 ; 41 : 78 ‐ 84 . 

  66. Low Dog T . Ginseng and other adaptogenic herbs . Altern Complement Ther . 2010 ; 16 : 1 ‐ 4 . 

  67. Janetzky K , Morreale AP . Probable interaction between warfarin and ginseng . Am J Health Syst Pharm . 1997 ; 54 : 692 ‐ 693 . 

  68. Zhu M , Chan KW , Ng LS , Chang Q , Chang S , Li RC . Possible influences of ginseng on the pharmacokinetics and pharmacodynamics of warfarin in rats . J Pharm Pharmacol . 1999 ; 51 : 175 ‐ 180 . 

  69. Zhan S , Guo W , Shao Q , Fan X , Li Z , Cheng Y . A pharmacokinetic and pharmacodynamic study of drug–drug interaction between ginsenoside Rg1, ginsenoside Rb1 and schizandrin after intravenous administration to rats . J Ethnopharmacol . 2014 ; 152 : 333 ‐ 339 . 

  70. Liu C , Hu M , Guo H , et al. Combined contribution of increased intestinal permeability and inhibited deglycosylation of ginsenoside Rb1 in the intestinal tract to the enhancement of ginsenoside Rb1 exposure in diabetic rats after oral administration . Drug Metab Dispos . 2015 ; 43 : 1702 ‐ 1710 . 

  71. Kim MG , Kim Y , Jeon JY , Kim DS . Effect of fermented red ginseng on cytochrome P450 and P‐glycoprotein activity in healthy subjects, as evaluated using the cocktail approach . Brit J Clin Pharmacol . 2016 ; 82 : 1580 ‐ 1590 . 

  72. Wang W , Wu X , Wang L , Meng Q , Liu W . Stereoselective property of 20(S)‐protopanaxadiol ocotillol type epimers affects its absorption and also the inhibition of P‐glycoprotein . Plos One . 2014 ; 9 : e98887 . 

  73. Mabuchi S , Ohmichi M , Nishio Y , et al. Inhibition of inhibitor of nuclear factor‐kappa B phosphorylation increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models . Clin Cancer Res . 2004 ; 10 : 7645 ‐ 7654 . 

  74. Yang LQ , Wang B , Gan H , et al. Enhanced oral bioavailability and anti‐tumour effect of paclitaxel by 20(s)‐ginsenoside Rg3 in vivo . Biopharm Drug Dispos . 2012 ; 33 : 425 ‐ 436 . 

  75. Zhang J , Zhou F , Wu X , et al. 20( S )‐Ginsenoside Rh2 noncompetitively inhibits P‐glycoprotein in vitro and in vivo : a case for herb–drug interactions . Drug Metab Dispos . 2010 ; 38 : 2179 ‐ 2187 . 

  76. Malati CY , Robertson SM , Hunt JD , et al. Influence of Panax ginseng on cytochrome P450 (CYP) 3A and P‐glycoprotein (Pgp) activity in healthy subjects . J Clin Pharmacol . 2012 ; 52 : 932 ‐ 939 . 

  77. Li N , Wang D , Ge G , Wang X , Liu Y , Yang L . Ginsenoside metabolites inhibit P‐glycoprotein in vitro and in situ using three absorption models . Planta Med . 2014 ; 80 : 290 ‐ 296 . 

  78. Zhang J , Zhou F , Niu F , et al. Stereoselective regulations of P‐glycoprotein by ginsenoside Rh2 epimers and the potential mechanisms from the view of pharmacokinetics . Plos One . 2012 ; 7 : e35768 . 

  79. Lau AJ , Seo BH , Woo SO , Koh HL . High‐performance liquid chromatographic method with quantitative comparisons of whole chromatograms of raw and steamed Panax notoginseng . J Chromatogr A . 2004 ; 1057 : 141 ‐ 149 . 

  80. Cho IH , Lee HJ , Kim YS . Differences in the volatile compositions of ginseng species ( Panax sp.) . J Agric Food Chem . 2012 ; 60 : 7616 ‐ 7622 . 

  81. Kim S , Shin BK , Dong KL , et al. Expeditious discrimination of four species of the Panax genus using direct infusion‐MS/MS combined with multivariate statistical analysis . J Chromatogr B . 2015 ; 1002 : 329 ‐ 336 . 

  82. Song HH , Kim DY , Woo S , Lee HK , Oh SR . An approach for simultaneous determination for geographical origins of Korean Panax ginseng by UPLC‐QTOF/MS coupled with OPLS‐DA models . J Ginseng Res . 2013 ; 37 : 341 ‐ 348 . 

  83. Song HH , Ji YM , Ryu HW , et al. Discrimination of white ginseng origins using multivariate statistical analysis of data sets . J Ginseng Res . 2014 ; 38 : 187 ‐ 193 . 

  84. Wang JR , Yau LF , Gao WN , et al. Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng . J Agric Food Chem . 2014 ; 62 : 9024 ‐ 9034 . 

  85. Qiu S , Yang WZ , Yao CL , et al. Nontargeted metabolomic analysis and “commercial‐homophyletic” comparison‐induced biomarkers verification for the systematic chemical differentiation of five different parts of Panax ginseng . J Chromatogr A . 2016 ; 1453 : 78 ‐ 87 . 

  86. Kim N , Kim K , Choi BY , et al. Metabolomic approach for age discrimination of Panax ginseng using UPLC‐Q‐TOF MS . J Agric Food Chem . 2011 ; 59 : 10435 ‐ 10441 . 

  87. Kim N , Kim K , Lee D , et al. Nontargeted metabolomics approach for age differentiation and structure interpretation of age‐dependent key constituents in hairy roots of Panax ginseng . J Nat Prod . 2012 ; 75 : 1777 ‐ 1784 . 

  88. Shin JS , Park HW , In G , et al. Metabolomic approach for discrimination of four‐ and six‐year‐old red ginseng ( Panax ginseng ) using UPLC‐QToF‐MS . Chem Pharm Bull . 2016 ; 64 : 1298 ‐ 1303 . 

  89. Pace R , Martinelli EM , Sardone N , De CE . Metabolomic evaluation of ginsenosides distribution in Panax genus ( Panax ginseng and Panax quinquefolius ) using multivariate statistical analysis . Fitoterapia . 2015 ; 101 : 80 ‐ 91 . 

  90. Xie G , Plumb R , Su M , et al. Ultra‐performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research . J Sep Sci . 2008 ; 31 : 1015 ‐ 1026 . 

  91. Xie GX , Ni Y , Su MM , et al. Application of ultra‐performance LC‐TOF MS metabolite profiling techniques to the analysis of medicinal Panax herbs . Metabolomics . 2008 ; 4 : 248 ‐ 260 . 

  92. Chen Y , Zhao Z , Chen H , Yi T , Qin M , Liang Z . Chemical differentiation and quality evaluation of commercial Asian and American ginsengs based on a UHPLC‐QTOF/MS/MS metabolomics approach . Phytochem Anal . 2015 ; 26 : 145 ‐ 160 . 

  93. Mao Q , Bai M , Xu JD , et al. Discrimination of leaves of Panax ginseng and P. quinquefolius by ultra high performance liquid chromatography quadrupole/time‐of‐flight mass spectrometry based metabolomics approach . J Pharm Biomed Anal . 2014 ; 97 : 129 ‐ 140 . 

  94. In G , Seo H , Park H , Jang K . A Metabolomic approach for the discrimination of red ginseng root parts and targeted validation . Molecules . 2017 ; 22 : 471 ‐ 481 . 

  95. Xie YY , Luo D , Cheng YJ , et al. Steaming‐induced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC‐ESI‐MS/MS n based multicomponent quantification fingerprint . J Agric Food Chem . 2012 ; 60 : 8213 ‐ 8224 . 

  96. Zhang HM , Li SL , Zhang H , et al. Holistic quality evaluation of commercial white and red ginseng using a UPLC‐QTOF‐MS/MS‐based metabolomics approach . J Pharm Biomed Anal . 2012 ; 62 : 258 ‐ 273 . 

  97. Wu W , Sun L , Zhang Z , Guo Y , Liu S . Profiling and multivariate statistical analysis of Panax ginseng based on ultra‐high‐performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry . J Pharm Biomed Anal . 2015 ; 107 : 141 ‐ 150 . 

  98. Park HW , In G , Kim JH , Cho BG , Han GH , Chang IM . Metabolomic approach for discrimination of processed ginseng genus ( Panax ginseng and Panax quinquefolius ) using UPLC‐QTOF MS . J Ginseng Res . 2014 ; 38 : 59 ‐ 65 . 

  99. Kite GC , Howes MJ , Leon CJ , Simmonds MS . Liquid chromatography/mass spectrometry of malonyl‐ginsenosides in the authentication of ginseng . Rapid Commun Mass Spectrom . 2003 ; 17 : 238 ‐ 244 . 

  100. Kong H , Wang M , Van Der Heijden R , Van Der Greef J , Hankemeier T , Xu G . Separation and identification of malonyl‐ginsenosides in white ginseng using HPLC‐LTQ‐FTMS. World Science and Technology/Modernization of Traditional . Chinese Medicine . 2009 ; 11 : 190 ‐ 194 . 

  101. Wan JY , Fan Y , Yu QT , et al. Integrated evaluation of malonyl ginsenosides, amino acids and polysaccharides in fresh and processed ginseng . J Pharm Biomed Anal . 2015 ; 107 : 89 ‐ 97 . 

  102. Qiu S , Yang WZ , Yao CL , et al. Malonylginsenosides with potential antidiabetic activities from the flower buds of Panax ginseng . J Nat Prod . 2017 ; 80 : 899 ‐ 908 . 

  103. Shi XJ , Yang WZ , Qiu S , et al. An in‐source multiple collision‐neutral loss filtering based nontargeted metabolomics approach for the comprehensive analysis of malonyl‐ginsenosides from Panax ginseng , P. quinquefolius , and P. notoginseng . Anal Chim Acta . 2017 ; 952 : 59 ‐ 70 . 

  104. Jin X , Zhu LY , Shen H , et al. Influence of sulphur‐fumigation on the quality of white ginseng: a quantitative evaluation of major ginsenosides by high performance liquid chromatography . Food Chem . 2012 ; 135 : 1141 ‐ 1147 . 

  105. Li SL , Shen H , Zhu LY , et al. Ultra‐high‐performance liquid chromatography‐quadrupole/time of flight mass spectrometry based chemical profiling approach to rapidly reveal chemical transformation of sulfur‐fumigated medicinal herbs, a case study on white ginseng . J Chromatogr A . 2012 ; 1231 : 31 ‐ 45 . 

  106. Ma B , Kan WL , Zhu H , Li SL , Lin G . Sulfur fumigation reducing systemic exposure of ginsenosides and weakening immunomodulatory activity of ginseng . J Ethnopharmacol . 2017 ; 195 : 222 ‐ 230 . 

  107. Liu J , Liu Y , Wang Y , Abozeid A , Zu YG , Tang ZH . The integration of GC‐MS and LC‐MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue‐ and species‐specific connectivity of primary metabolites and ginsenosides accumulation . J Pharm Biomed Anal . 2017 ; 135 : 176 ‐ 185 . 

  108. Park SY , Lee JG , Cho HS , et al. Metabolite profiling approach for assessing the effects of colored light‐emitting diode lighting on the adventitious roots of ginseng ( Panax ginseng C. A. Mayer), Plant . Omics . 2013 ; 6 : 224 ‐ 230 . 

  109. Lee YS , Park HS , Lee DK , et al. Comparative analysis of the transcriptomes and primary metabolite profiles of adventitious roots of five Panax ginseng cultivars . J Ginseng Res . 2017 ; 41 : 60 ‐ 68 . 

  110. Liu J , Liu Y , Wang Y , et al. GC‐MS metabolomic analysis to reveal the metabolites and biological pathways involved in the developmental stages and tissue response of Panax ginseng . Molecules . 2017 ; 22 : 496 ‐ 510 . 

  111. Chang X , Zhang J , Li D , et al. Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain cultivated ginseng leaves using UHPLC/QTOF‐MS . J Pharm Biomed Anal . 2017 ; 141 : 108 ‐ 122 . 

  112. Lu X , Zhao X , Bai C , Zhao C , Lu G , Xu G . LC‐MS‐based metabonomics analysis . J Chromatogr B . 2008 ; 866 : 64 ‐ 76 . 

  113. Wang Y , Zhou S , Wang M , et al. UHPLC/Q‐TOFMS‐based metabolomics for the characterization of cold and hot properties of Chinese materia medica . J Ethnopharmacol . 2015 ; 179 : 234 ‐ 242 . 

  114. Qi Y , Pi Z , Liu S , Song F , Lin N , Liu Z . A metabonomic study of adjuvant‐induced arthritis in rats using ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry . Mol Biosyst . 2014 ; 10 : 2617 ‐ 2625 . 

  115. Lin H , Pi Z , Men L , Chen W , Liu Z , Liu Z . Urinary metabonomic study of Panax ginseng in deficiency of vital energy rat using ultra performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry . J Ethnopharmacol . 2016 ; 184 : 10 ‐ 17 . 

  116. Verpoorte R , Choi YH , Kim HK . Ethnopharmacology and systems biology: a perfect holistic match . J Ethnopharmacol . 2005 ; 100 : 53 ‐ 56 . 

  117. Wang M , Lamers RJAN , Korthout HAAJ , et al. Metabolomics in the context of systems biology: Bridging traditional Chinese medicine and molecular pharmacology . Phytother Res . 2005 ; 19 : 173 ‐ 182 . 

  118. Zhang A , Sun H , Wang Z , Sun W , Wang P , Wang X . Metabolomics: towards understanding traditional Chinese medicine . Planta Med . 2010 ; 76 : 2026 ‐ 2035 . 

  119. Yang L , Yu QT , Ge YZ , et al. Distinct urine metabolome after Asian ginseng and American ginseng intervention based on GC‐MS metabolomics approach . Sci Rep . 2016 ; 6 : 39045 . 

  120. Kim HJ , Cho CW , Hwang JT , et al. LC‐MS‐based metabolomic analysis of serum and livers from red ginseng‐fed rats . J Ginseng Res . 2013 ; 37 : 371 ‐ 378 . 

  121. Xie JT , Wu JA , Mehendale S , Aung HH , Yuan CS . Anti‐hyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice . Phytomedicine . 2004 ; 11 : 182 ‐ 187 . 

  122. Niu J , Pi Z , Yue H , Wang Y , Yu Q , Liu S . Effect of ginseng polysaccharide on the urinary excretion of type 2 diabetic rats studied by liquid chromatography‐mass spectrometry . J Chromatogr B . 2012 ; 907 : 7 ‐ 12 . 

  123. Gong Y , Liu Y , Zhou L , et al. A UHPLC‐TOF/MS method based metabonomic study of total ginsenosides effects on Alzheimer disease mouse model . J Pharm Biomed Anal . 2015 ; 115 : 174 ‐ 182 . 

  124. Li N , Zhou L , Li W , Liu Y , Wang J , He P . Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer's disease mouse model: a metabolomics study . J Chromatogr B . 2015 ; 985 : 54 ‐ 61 . 

  125. Li N , Liu Y , Li W , et al. A UPLC/MS‐based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease . J Ginseng Res . 2016 ; 40 : 9 ‐ 17 . 

  126. Feng L , Yue XF , Chen YX , et al. LC/MS‐based metabolomics strategy to assess the amelioration effects of ginseng total saponins on memory deficiency induced by simulated microgravity . J Pharm Biomed Anal . 2016 ; 125 : 329 ‐ 338 . 

  127. Feng L , Liu XM , Cao FR , et al. Anti‐stress effects of ginseng total saponins on hindlimb‐unloaded rats assessed by a metabolomics study . J Ethnopharmacol . 2016 ; 188 : 39 ‐ 47 . 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로