$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Experimental simulation and mathematical modelling of clogging in stone column 원문보기

Canadian geotechnical journal. Revue canadienne de gèotechnique, v.55 no.3, 2018년, pp.427 - 436  

Tai, Pei (Centre for Geomechanics and Railway Engineering, School of Civil Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong City, NSW 2522, Australia.) ,  Indraratna, Buddhima ,  Rujikiatkamjorn, Cholachat

Abstract AI-Helper 아이콘AI-Helper

In this paper, time-dependent clogging is studied considering a unit cell consisting of a single stone column interacting with the surrounding soft clay. Clogging is assessed quantitatively and the corresponding void space of the column is determined using computed tomography. It is observed that th...

Abstract

Dans cet article, le colmatage dépendant du temps est étudié en tenant compte d’une cellule unitaire constituée d’une seule colonne de pierre interagissant avec l’argile molle environnante. Le colmatage est évalué quantitativement et l’espace vide correspondant de la colonne est déterminé à l’aide de la tomodensitométrie. On constate que l’étendue du colmatage est importante dans la partie supérieure de la colonne, mais diminue rapidement avec la profondeur. Les propriétés du sol dans la zone bouchée sont déterminées indirectement par des essais supplémentaires de mélanges d’argiles et d’agrégats avec diverses fractions d’argile. Un modèle de consolidation de contrainte égale basé sur le principe de l’analyse des cellules unitaires est développé pour capturer à la fois le colmatage initial et temporel. Le modèle explique une réduction de la perméabilité et une augmentation de la compressibilité de la colonne. Ce modèle actuel, comme prévu, offre des résultats identiques à certaines études antérieures si le colmatage est ignoré, tandis que la comparaison avec d’autres modèles sélectionnés démontre l’influence que le colmatage de la colonne de pierre peut avoir sur la consolidation du sol environnant. En outre, les prédictions de l’établissement des charges du modèle proposé de « contrainte égale » sont également comparées à la réponse de consolidation d’un modèle de « contrainte libre » développé précédemment. [Traduit par la Rédaction]

주제어

참고문헌 (37)

  1. Alem, Abdellah, Ahfir, Nasre-Dine, Elkawafi, Abdulghadir, Wang, HuaQing. Hydraulic Operating Conditions and Particle Concentration Effects on Physical Clogging of a Porous Medium. Transport in porous media, vol.106, no.2, 303-321.

  2. Al-Tabbaa, A., Wood, D. M.. Some measurements of the permeability of kaolin. Géotechnique, vol.37, no.4, 499-514.

  3. Ambily, A. P., Gandhi, Shailesh R.. Behavior of Stone Columns Based on Experimental and FEM Analysis. Journal of geotechnical and geoenvironmental engineering, vol.133, no.4, 405-415.

  4. Arulrajah, A., Abdullah, A., Bo, M. W., Bouazza, A.. Ground improvement techniques for railway embankments. Proceedings of the Institution of Civil Engineers. Ground improvement, vol.162, no.1, 3-14.

  5. Balaam, N. P., Booker, J. R.. Analysis of rigid rafts supported by granular piles. International journal for numerical and analytical methods in geomechanics, vol.5, no.4, 379-403.

  6. Barron, R.A. 1948. The influence of drain wells on the consolidation of fine-grained soils. U.S. Engineer Office, U.S. Army Corps of Engineers, Providence, R.I. 

  7. Biot, Maurice A.. General Theory of Three-Dimensional Consolidation. Journal of applied physics, vol.12, no.2, 155-164.

  8. Bouassida, M., Carter, J. P.. Optimization of Design of Column-Reinforced Foundations. International journal of geomechanics, vol.14, no.6, 04014031-.

  9. Carrier III, W. David. Goodbye, Hazen; Hello, Kozeny-Carman. Journal of geotechnical and geoenvironmental engineering, vol.129, no.11, 1054-1056.

  10. Castro, Jorge, Sagaseta, César. Consolidation around stone columns. Influence of column deformation. International journal for numerical and analytical methods in geomechanics, vol.33, no.7, 851-877.

  11. Castro, Jorge, Sagaseta, César. Consolidation and deformation around stone columns: Numerical evaluation of analytical solutions. Computers and geotechnics, vol.38, no.3, 354-362.

  12. Cooper, M. R., Rose, A. N.. Stone column support for an embankment on deep alluvial soils. Proceedings of the Institution of Civil Engineers, Geotechnical engineering, vol.137, no.1, 15-25.

  13. Deb, Kousik, Shiyamalaa, S.. Effect of Clogging on Rate of Consolidation of Stone Column-Improved Ground by Considering Particle Migration. International journal of geomechanics, vol.16, no.1, 04015017-.

  14. Vandevivere, Philippe, Baveye, Philippe, de Lozada, Diego Sanchez, DeLeo, Paul. Microbial Clogging of Saturated Soils and Aquifer Materials: Evaluation of Mathematical Models. Water resources research, vol.31, no.9, 2173-2180.

  15. Australian Journal of Civil Engineering Fatahi B. 67 10 1 2012 10.7158/C11-700.2012.10.1 

  16. Han, Jie, Ye, Shu-Lin. Simplified Method for Consolidation Rate of Stone Column Reinforced Foundations. Journal of geotechnical and geoenvironmental engineering, vol.127, no.7, 597-603.

  17. Han, J., Ye, S. L.. A Theoretical Solution for Consolidation Rates of Stone Column‐Reinforced Foundations Accounting for Smear and Well Resistance Effects. International journal of geomechanics, vol.2, no.2, 135-151.

  18. Hughes, J. M. O., Withers, N. J., Greenwood, D. A.. A field trial of the reinforcing effect of a stone column in soil. Géotechnique, vol.25, no.1, 31-44.

  19. Huston, Davis L., Fox, James F.. Clogging of Fine Sediment within Gravel Substrates: Dimensional Analysis and Macroanalysis of Experiments in Hydraulic Flumes. Journal of hydraulic engineering, vol.141, no.8, 04015015-.

  20. Indraratna, B., Vafai, F.. Analytical Model for Particle Migration within Base Soil-Filter System. Journal of geotechnical and geoenvironmental engineering, vol.123, no.2, 100-109.

  21. Indraratna, B., Ionescu, D., Christie, H. D.. Shear Behavior of Railway Ballast Based on Large-Scale Triaxial Tests. Journal of geotechnical and geoenvironmental engineering, vol.124, no.5, 439-449.

  22. Indraratna, Buddhima, Basack, Sudip, Rujikiatkamjorn, Cholachat. Numerical Solution of Stone Column-Improved Soft Soil Considering Arching, Clogging, and Smear Effects. Journal of geotechnical and geoenvironmental engineering, vol.139, no.3, 377-394.

  23. LEI, G. H., ZHENG, Q., NG, C. W. W., CHIU, A. C. F., XU, B.. An analytical solution for consolidation with vertical drains under multi-ramp loading. Géotechnique, vol.65, no.7, 531-547.

  24. Leo, Chin Jian. Equal Strain Consolidation by Vertical Drains. Journal of geotechnical and geoenvironmental engineering, vol.130, no.3, 316-327.

  25. Lu, Meng-Meng, Xie, Kang-He, Guo, Biao. Consolidation theory for a composite foundation considering radial and vertical flows within the column and the variation of soil permeability within the disturbed soil zone. Canadian geotechnical journal: Revue canadienne de géotechnique, vol.47, no.2, 207-217.

  26. Ni, J. 2012. Application of geosynthetic vertical drains under cyclic loads in stabilizing tracks. Doctor of Philosophy, University of Wollongong, Wollongong. 

  27. Automatica Otsu N. 23 11 285 1975 

  28. Reddi, Lakshmi N., Ming, Xiao, Hajra, Malay G., Lee, In Mo. Permeability Reduction of Soil Filters due to Physical Clogging. Journal of geotechnical and geoenvironmental engineering, vol.126, no.3, 236-246.

  29. Simpson, D. C., Evans, T. M.. Behavioral Thresholds in Mixtures of Sand and Kaolinite Clay. Journal of geotechnical and geoenvironmental engineering, vol.142, no.2, 04015073-.

  30. Siriwardene, N.R., Deletic, A., Fletcher, T.D.. Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water research, vol.41, no.7, 1433-1440.

  31. Geotechnical Engineering Tang X.W. 209 29 2 1998 

  32. Valdes, Julio R., Santamarina, J. Carlos. Particle Clogging in Radial Flow: Microscale Mechanisms. SPE journal, vol.11, no.2, 193-198.

  33. Wang, Guocai. Consolidation of Soft Clay Foundations Reinforced by Stone Columns under Time-Dependent Loadings. Journal of geotechnical and geoenvironmental engineering, vol.135, no.12, 1922-1931.

  34. WATABE, Y., YAMADA, K., SAITOH, K.. Hydraulic conductivity and compressibility of mixtures of Nagoya clay with sand or bentonite. Géotechnique, vol.61, no.3, 211-219.

  35. WEBER, T.M., PLöTZE, M., LAUE, J., PESCHKE, G., SPRINGMAN, S.M.. Smear zone identification and soil properties around stone columns constructed in-flight in centrifuge model tests. Géotechnique, vol.60, no.3, 197-206.

  36. Xie, Kang-He, Lu, Meng-Meng, Liu, Gan-Bin. Equal strain consolidation for stone columns reinforced foundation. International journal for numerical and analytical methods in geomechanics, vol.33, no.15, 1721-1735.

  37. Yong, C.F., McCarthy, D.T., Deletic, A.. Predicting physical clogging of porous and permeable pavements. Journal of hydrology, vol.481, 48-55.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로