$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Doping effect in Si nanocrystals

Journal of physics. D, applied physics, v.51 no.23, 2018년, pp.233002 -   

Li, Dongke (School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210093, People’s Republic of China) ,  Xu, Jun (School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210093, People’s Republic of China) ,  Zhang, Pei (School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210093, People’s Republic of China) ,  Jiang, Yicheng (School of Electronic Science and Engineering, National Laboratory of Solid Stat) ,  Chen, Kunji

Abstract AI-Helper 아이콘AI-Helper

Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, l...

참고문헌 (157)

  1. [1] Marri I, Degoli E and Ossicini S 2017 Doped and codoped silicon nanocrystals: the role of surfaces and interfaces Prog. Surf. Sci. 92 375–408 10.1016/j.progsurf.2017.07.003 Doped and codoped silicon nanocrystals: the role of surfaces and interfaces Marri I, Degoli E and Ossicini S Prog. Surf. Sci. 0079-6816 92 2017 375 408 

  2. [2] Priolo F, Gregorkiewicz T, Galli M and Krauss T F 2014 Silicon nanostructures for photonics and photovoltaics Nat. Nanotechnol. 9 19–32 10.1038/nnano.2013.271 Silicon nanostructures for photonics and photovoltaics Priolo F, Gregorkiewicz T, Galli M and Krauss T F Nat. Nanotechnol. 9 2014 19 32 

  3. [3] Jurbergs D, Rogojina E, Mangolini L and Kortshagen U 2006 Silicon nanocrystals with ensemble quantum yields exceeding 60% Appl. Phys. Lett. 88 233116 10.1063/1.2210788 Silicon nanocrystals with ensemble quantum yields exceeding 60% Jurbergs D, Rogojina E, Mangolini L and Kortshagen U Appl. Phys. Lett. 88 233116 2006 

  4. [4] Mangolini L, Thimsen E and Kortshagen U 2005 High-yield plasma synthesis of luminescent silicon nanocrystals Nano Lett. 5 655–9 10.1021/nl050066y High-yield plasma synthesis of luminescent silicon nanocrystals Mangolini L, Thimsen E and Kortshagen U Nano Lett. 5 2005 655 659 

  5. [5] Barbagiovanni E G, Lockwood D J, Simpson P J and Goncharova L V 2014 Quantum confinement in Si and Ge nanostructures: theory and experiment Appl. Phys. Rev. 1 011302 10.1063/1.4835095 Quantum confinement in Si and Ge nanostructures: theory and experiment Barbagiovanni E G, Lockwood D J, Simpson P J and Goncharova L V Appl. Phys. Rev. 1 011302 2014 

  6. [6] Mu W, Zhang P, Xu J, Sun S, Xu J, Li W and Chen K 2014 Direct-current and alternating-current driving Si quantum dots-based light emitting device IEEE J. Sel. Top. Quantum Electron. 20 8200106 10.1109/JSTQE.2013.2255587 Direct-current and alternating-current driving Si quantum dots-based light emitting device Mu W, Zhang P, Xu J, Sun S, Xu J, Li W and Chen K IEEE J. Sel. Top. Quantum Electron. 1077-260X 20 2014 8200106 

  7. [7] Cheng K Y, Anthony R, Kortshagen U R and Holmes R J 2011 High-efficiency silicon nanocrystal light-emitting devices Nano Lett. 11 1952–6 10.1021/nl2001692 High-efficiency silicon nanocrystal light-emitting devices Cheng K Y, Anthony R, Kortshagen U R and Holmes R J Nano Lett. 11 2011 1952 1956 

  8. [8] Puzzo D P, Henderson E J, Helander M G, Wang Z B, Ozin G A and Lu Z H 2011 Visible colloidal nanocrystal silicon light-emitting diode Nano Lett. 11 1585–90 10.1021/nl1044583 Visible colloidal nanocrystal silicon light-emitting diode Puzzo D P, Henderson E J, Helander M G, Wang Z B, Ozin G A and Lu Z H Nano Lett. 11 2011 1585 1590 

  9. [9] Cao Y, Xu J, Ge Z, Zhai Y, Li W, Jiang X and Chen K 2015 Enhanced broadband spectral response and energy conversion efficiency for hetero-junction solar cells with graded-sized Si quantum dots/SiC multilayers J. Mater. Chem. C 3 12061–7 10.1039/C5TC02585K Enhanced broadband spectral response and energy conversion efficiency for hetero-junction solar cells with graded-sized Si quantum dots/SiC multilayers Cao Y, Xu J, Ge Z, Zhai Y, Li W, Jiang X and Chen K J. Mater. Chem. 3 C 2015 12061 12067 

  10. [10] Conibeer G et al 2011 Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport Prog. Photovolt. 19 813–24 10.1002/pip.1045 Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport Conibeer G et al Prog. Photovolt. 19 2011 813 824 

  11. [11] Bomm J et al 2011 Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators Sol. Energy Mater. Sol. C 95 2087–94 10.1016/j.solmat.2011.02.027 Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators Bomm J et al Sol. Energy Mater. Sol. 95 C 2011 2087 2094 

  12. [12] Nozik A J 2010 Nanoscience and nanostructures for photovoltaics and solar fuels Nano Lett. 10 2735–41 10.1021/nl102122x Nanoscience and nanostructures for photovoltaics and solar fuels Nozik A J Nano Lett. 10 2010 2735 2741 

  13. [13] De Salvo B, Ghibaudo G, Pananakakis G, Masson P, Baron T, Buffet N, Fernandes A and Guillaumot B 2001 Experimental and theoretical investigation of nano-crystal and nitride-trap memory devices IEEE Trans. Electron Devices 48 1789–99 10.1109/16.936709 Experimental and theoretical investigation of nano-crystal and nitride-trap memory devices De Salvo B, Ghibaudo G, Pananakakis G, Masson P, Baron T, Buffet N, Fernandes A and Guillaumot B IEEE Trans. Electron Devices 0018-9383 48 2001 1789 1799 

  14. [14] Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbe E F and Chan K 1996 A silicon nanocrystals based memory Appl. Phys. Lett. 68 1377–9 10.1063/1.116085 A silicon nanocrystals based memory Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbe E F and Chan K Appl. Phys. Lett. 68 1996 1377 1379 

  15. [15] He Y, Su Y Y, Yang X B, Kang Z H, Xu T T, Zhang R Q, Fan C H and Lee S T 2009 Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging J. Am. Chem. Soc. 131 4434–8 10.1021/ja808827g Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging He Y, Su Y Y, Yang X B, Kang Z H, Xu T T, Zhang R Q, Fan C H and Lee S T J. Am. Chem. Soc. 131 2009 4434 4438 

  16. [16] Cheng X, Lowe S B, Reece P J and Gooding J J 2014 Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications Chem. Soc. Rev. 43 2680–700 10.1039/C3CS60353A Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications Cheng X, Lowe S B, Reece P J and Gooding J J Chem. Soc. Rev. 43 2014 2680 2700 

  17. [17] Zhong Y L, Sun X T, Wang S Y, Peng F, Bao F, Su Y Y, Li Y Y, Lee S T and He Y 2015 Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging ACS Nano 9 5958–67 10.1021/acsnano.5b00683 Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging Zhong Y L, Sun X T, Wang S Y, Peng F, Bao F, Su Y Y, Li Y Y, Lee S T and He Y ACS Nano 9 2015 5958 5967 

  18. [18] Ni Z et al 2017 Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors ACS Nano 11 9854–62 10.1021/acsnano.7b03569 Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors Ni Z et al ACS Nano 11 2017 9854 9862 

  19. [19] Yu T, Wang F, Xu Y, Ma L, Pi X and Yang D 2016 Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors Adv. Mater. 28 4912–9 10.1002/adma.201506140 Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors Yu T, Wang F, Xu Y, Ma L, Pi X and Yang D Adv. Mater. 28 2016 4912 4919 

  20. [20] Lin T, Liu X, Zhou B, Zhan Z Y, Cartwright A N and Swihart M T 2014 A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink Adv. Funct. Mater. 24 6016–22 10.1002/adfm.201400600 A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink Lin T, Liu X, Zhou B, Zhan Z Y, Cartwright A N and Swihart M T Adv. Funct. Mater. 24 2014 6016 6022 

  21. [21] Dalpian G M and Chelikowsky J R 2006 Self-purification in semiconductor nanocrystals Phys. Rev. Lett. 96 226802 10.1103/PhysRevLett.96.226802 Self-purification in semiconductor nanocrystals Dalpian G M and Chelikowsky J R Phys. Rev. Lett. 96 226802 2006 

  22. [22] Seguini G, Castro C, Schamm-Chardon S, BenAssayag G, Pellegrino P and Perego M 2013 Scaling size of the interplay between quantum confinement and surface related effects in nanostructured silicon Appl. Phys. Lett. 103 023103 10.1063/1.4813743 Scaling size of the interplay between quantum confinement and surface related effects in nanostructured silicon Seguini G, Castro C, Schamm-Chardon S, BenAssayag G, Pellegrino P and Perego M Appl. Phys. Lett. 103 023103 2013 

  23. [23] Melnikov D V and Chelikowsky J R 2004 Quantum confinement in phosphorus-doped silicon nanocrystals Phys. Rev. Lett. 92 046802 10.1103/PhysRevLett.92.046802 Quantum confinement in phosphorus-doped silicon nanocrystals Melnikov D V and Chelikowsky J R Phys. Rev. Lett. 92 046802 2004 

  24. [24] Lu Z H, Lockwood D J and Baribeau J M 1995 Quantum confinement and light-emission in SiO2/Si superlattices Nature 378 258–60 10.1038/378258a0 Quantum confinement and light-emission in SiO2/Si superlattices Lu Z H, Lockwood D J and Baribeau J M Nature 378 1995 258 260 

  25. [25] Pi X 2012 Doping silicon nanocrystals with boron and phosphorus J. Nanomater. 2012 912903 10.1155/2012/912903 Doping silicon nanocrystals with boron and phosphorus Pi X J. Nanomater. 2012 912903 2012 

  26. [26] Ni Z, Pi X, Ali M, Zhou S, Nozaki T and Yang D 2015 Freestanding doped silicon nanocrystals synthesized by plasma J. Phys. D: Appl. Phys. 48 314006 10.1088/0022-3727/48/31/314006 Freestanding doped silicon nanocrystals synthesized by plasma Ni Z, Pi X, Ali M, Zhou S, Nozaki T and Yang D J. Phys. D: Appl. Phys. 0022-3727 48 31 314006 2015 

  27. [27] Pereira R N and Almeida A J 2015 Doped semiconductor nanoparticles synthesized in gas-phase plasmas J. Phys. D: Appl. Phys. 48 314005 10.1088/0022-3727/48/31/314005 Doped semiconductor nanoparticles synthesized in gas-phase plasmas Pereira R N and Almeida A J J. Phys. D: Appl. Phys. 0022-3727 48 31 314005 2015 

  28. [28] Fujii M, Sugimoto H and Imakita K 2016 All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping Nanotechnology 27 262001 10.1088/0957-4484/27/26/262001 All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping Fujii M, Sugimoto H and Imakita K Nanotechnology 0957-4484 27 26 262001 2016 

  29. [29] Oliva-Chatelain B L, Ticich T M and Barron A R 2016 Doping silicon nanocrystals and quantum dots Nanoscale 8 1733–45 10.1039/C5NR04978D Doping silicon nanocrystals and quantum dots Oliva-Chatelain B L, Ticich T M and Barron A R Nanoscale 8 2016 1733 1745 

  30. [30] Arduca E and Perego M 2017 Doping of silicon nanocrystals Mater. Sci. Semicond. Process. 62 156–70 10.1016/j.mssp.2016.10.054 Doping of silicon nanocrystals Arduca E and Perego M Mater. Sci. Semicond. Process. 1369-8001 62 2017 156 170 

  31. [31] Stegner A R, Pereira R N, Klein K, Lechner R, Dietmueller R, Brandt M S, Stutzmann M and Wiggers H 2008 Electronic transport in phosphorus-doped silicon nanocrystal networks Phys. Rev. Lett. 100 026803 10.1103/PhysRevLett.100.026803 Electronic transport in phosphorus-doped silicon nanocrystal networks Stegner A R, Pereira R N, Klein K, Lechner R, Dietmueller R, Brandt M S, Stutzmann M and Wiggers H Phys. Rev. Lett. 100 026803 2008 

  32. [32] Stegner A R, Pereira R N, Lechner R, Klein K, Wiggers H, Stutzmann M and Brandt M S 2009 Doping efficiency in freestanding silicon nanocrystals from the gas phase: phosphorus incorporation and defect-induced compensation Phys. Rev. B 80 165326 10.1103/PhysRevB.80.165326 Doping efficiency in freestanding silicon nanocrystals from the gas phase: phosphorus incorporation and defect-induced compensation Stegner A R, Pereira R N, Lechner R, Klein K, Wiggers H, Stutzmann M and Brandt M S Phys. Rev. 80 B 165326 2009 

  33. [33] Lechner R, Stegner A R, Pereira R N, Dietmueller R, Brandt M S, Ebbers A, Trocha M, Wiggers H and Stutzmann M 2008 Electronic properties of doped silicon nanocrystal films J. Appl. Phys. 104 053701 10.1063/1.2973399 Electronic properties of doped silicon nanocrystal films Lechner R, Stegner A R, Pereira R N, Dietmueller R, Brandt M S, Ebbers A, Trocha M, Wiggers H and Stutzmann M J. Appl. Phys. 104 053701 2008 

  34. [34] Pereira R N, Stegner A R, Klein K, Lechner R, Dietinueller R, Wiggers H, Brandt M S and Stutzmann M 2007 Electronic transport through Si nanocrystal films: spin-dependent conductivity studies Physica B 401 527–30 10.1016/j.physb.2007.09.014 Electronic transport through Si nanocrystal films: spin-dependent conductivity studies Pereira R N, Stegner A R, Klein K, Lechner R, Dietinueller R, Wiggers H, Brandt M S and Stutzmann M Physica 0921-4526 401 B 2007 527 530 

  35. [35] Pereira R N, Stegner A R, Andlauer T, Klein K, Wiggers H, Brandt M S and Stutzmann M 2009 Dielectric screening versus quantum confinement of phosphorus donors in silicon nanocrystals investigated by magnetic resonance Phys. Rev. B 79 161304 10.1103/PhysRevB.79.161304 Dielectric screening versus quantum confinement of phosphorus donors in silicon nanocrystals investigated by magnetic resonance Pereira R N, Stegner A R, Andlauer T, Klein K, Wiggers H, Brandt M S and Stutzmann M Phys. Rev. 79 B 161304 2009 

  36. [36] Kortshagen U R, Sankaran R M, Pereira R N, Girshick S L, Wu J J and Aydil E S 2016 Nonthermal plasma synthesis of nanocrystals: fundamental principles, materials, and applications Chem. Rev. 116 11061–127 10.1021/acs.chemrev.6b00039 Nonthermal plasma synthesis of nanocrystals: fundamental principles, materials, and applications Kortshagen U R, Sankaran R M, Pereira R N, Girshick S L, Wu J J and Aydil E S Chem. Rev. 116 2016 11061 11127 

  37. [37] Veinot J G C 2006 Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals Chem. Commun. 0 4160–8 10.1039/b607476f Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals Veinot J G C Chem. Commun. 0 2006 4160 4168 

  38. [38] Fujii M, Hayashi S and Yamamoto K 1998 Photoluminescence from B-doped Si nanocrystals J. Appl. Phys. 83 7953–7 10.1063/1.367976 Photoluminescence from B-doped Si nanocrystals Fujii M, Hayashi S and Yamamoto K J. Appl. Phys. 83 1998 7953 7957 

  39. [39] Holmes J D, Ziegler K J, Doty R C, Pell L E, Johnston K P and Korgel B A 2001 Highly luminescent silicon nanocrystals with discrete optical transitions J. Am. Chem. Soc. 123 3743–8 10.1021/ja002956f Highly luminescent silicon nanocrystals with discrete optical transitions Holmes J D, Ziegler K J, Doty R C, Pell L E, Johnston K P and Korgel B A J. Am. Chem. Soc. 123 2001 3743 3748 

  40. [40] Svrcek V, Sasaki T, Shimizu Y and Koshizaki N 2006 Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water Appl. Phys. Lett. 89 213113 10.1063/1.2397014 Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water Svrcek V, Sasaki T, Shimizu Y and Koshizaki N Appl. Phys. Lett. 89 213113 2006 

  41. [41] Dohnalova K, Poddubny A N, Prokofiev A A, de Boer W D A M, Umesh C P, Paulusse J M J, Zuilhof H and Gregorkiewicz T 2013 Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission Light Sci. Appl. 2 e47 10.1038/lsa.2013.3 Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission Dohnalova K, Poddubny A N, Prokofiev A A, de Boer W D A M, Umesh C P, Paulusse J M J, Zuilhof H and Gregorkiewicz T Light Sci. Appl. 2 2013 e47 

  42. [42] Wheeler L M, Neale N R, Chen T and Kortshagen U R 2013 Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals Nat. Commun. 4 2197 10.1038/ncomms3197 Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals Wheeler L M, Neale N R, Chen T and Kortshagen U R Nat. Commun. 4 2013 2197 

  43. [43] Kramer N J, Schramke K S and Kortshagen U R 2015 Plasmonic properties of silicon nanocrystals doped with boron and phosphorus Nano Lett. 15 5597–603 10.1021/acs.nanolett.5b02287 Plasmonic properties of silicon nanocrystals doped with boron and phosphorus Kramer N J, Schramke K S and Kortshagen U R Nano Lett. 15 2015 5597 5603 

  44. [44] Rowe D J, Jeong J S, Mkhoyan K A and Kortshagen U R 2013 Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance Nano Lett. 13 1317–22 10.1021/nl4001184 Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance Rowe D J, Jeong J S, Mkhoyan K A and Kortshagen U R Nano Lett. 13 2013 1317 1322 

  45. [45] Zhou S, Ni Z, Ding Y, Sugaya M, Pi X and Nozaki T 2016 Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron ACS Photonics 3 415–22 10.1021/acsphotonics.5b00568 Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron Zhou S, Ni Z, Ding Y, Sugaya M, Pi X and Nozaki T ACS Photonics 3 2016 415 422 

  46. [46] Ni Z, Pi X, Zhou S, Nozaki T, Grandidier B and Yang D 2016 Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals Adv. Opt. Mater. 4 700–7 10.1002/adom.201500706 Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals Ni Z, Pi X, Zhou S, Nozaki T, Grandidier B and Yang D Adv. Opt. Mater. 4 2016 700 707 

  47. [47] Pi X D, Gresback R, Liptak R W, Campbell S A and Kortshagen U 2008 Doping efficiency, dopant location, and oxidation of Si nanocrystals Appl. Phys. Lett. 92 123102 10.1063/1.2897291 Doping efficiency, dopant location, and oxidation of Si nanocrystals Pi X D, Gresback R, Liptak R W, Campbell S A and Kortshagen U Appl. Phys. Lett. 92 123102 2008 

  48. [48] Ma Y, Chen X, Pi X and Yang D 2012 Lightly boron and phosphorus co-doped silicon nanocrystals J. Nanopart. Res. 14 802 10.1007/s11051-012-0802-z Lightly boron and phosphorus co-doped silicon nanocrystals Ma Y, Chen X, Pi X and Yang D J. Nanopart. Res. 1388-0764 14 2012 802 

  49. [49] Kanno T, Sugimoto H, Fucikova A, Valenta J and Fujii M 2016 Single-dot spectroscopy of boron and phosphorus codoped silicon quantum dots J. Appl. Phys. 120 164307 10.1063/1.4965986 Single-dot spectroscopy of boron and phosphorus codoped silicon quantum dots Kanno T, Sugimoto H, Fucikova A, Valenta J and Fujii M J. Appl. Phys. 120 164307 2016 

  50. [50] Hori Y, Kano S, Sugimoto H, Imakita K and Fujii M 2016 Size-dependence of acceptor and donor levels of boron and phosphorus codoped colloidal silicon nanocrystals Nano Lett. 16 2615–20 10.1021/acs.nanolett.6b00225 Size-dependence of acceptor and donor levels of boron and phosphorus codoped colloidal silicon nanocrystals Hori Y, Kano S, Sugimoto H, Imakita K and Fujii M Nano Lett. 16 2016 2615 2620 

  51. [51] Sugimoto H, Fujii M and Imakita K 2014 Synthesis of boron and phosphorus codoped all-inorganic colloidal silicon nanocrystals from hydrogen silsesquioxane Nanoscale 6 12354–9 10.1039/C4NR03857F Synthesis of boron and phosphorus codoped all-inorganic colloidal silicon nanocrystals from hydrogen silsesquioxane Sugimoto H, Fujii M and Imakita K Nanoscale 6 2014 12354 12359 

  52. [52] Baldwin R K, Zou J, Pettigrew K A, Yeagle G J, Britt R D and Kauzlarich S M 2006 The preparation of a phosphorus doped silicon film from phosphorus containing silicon nanoparticles Chem. Commun. 0 658–60 10.1039/b513330k The preparation of a phosphorus doped silicon film from phosphorus containing silicon nanoparticles Baldwin R K, Zou J, Pettigrew K A, Yeagle G J, Britt R D and Kauzlarich S M Chem. Commun. 0 2006 658 660 

  53. [53] Sugimoto H, Fujii M, Imakita K, Hayashi S and Akamatsu K 2012 All-inorganic near-infrared luminescent colloidal silicon nanocrystals: high dispersibility in polar liquid by phosphorus and boron codoping J. Phys. Chem. C 116 17969–74 10.1021/jp305832x All-inorganic near-infrared luminescent colloidal silicon nanocrystals: high dispersibility in polar liquid by phosphorus and boron codoping Sugimoto H, Fujii M, Imakita K, Hayashi S and Akamatsu K J. Phys. Chem. 1932-7447 116 C 2012 17969 17974 

  54. [54] Sugimoto H, Fujii M, Imakita K, Hayashi S and Akamatsu K 2013 Phosphorus and boron codoped colloidal silicon nanocrystals with inorganic atomic ligands J. Phys. Chem. C 117 6807–13 10.1021/jp312788k Phosphorus and boron codoped colloidal silicon nanocrystals with inorganic atomic ligands Sugimoto H, Fujii M, Imakita K, Hayashi S and Akamatsu K J. Phys. Chem. 1932-7447 117 C 2013 6807 6813 

  55. [55] Kanzawa Y, Fujii M, Hayashi S and Yamamoto K 1996 Doping of B atoms into Si nanocrystals prepared by rf cosputtering Solid State Commun. 100 227–30 10.1016/0038-1098(96)00408-5 Doping of B atoms into Si nanocrystals prepared by rf cosputtering Kanzawa Y, Fujii M, Hayashi S and Yamamoto K Solid State Commun. 0038-1098 100 1996 227 230 

  56. [56] Mimura A, Fujii M, Hayashi S, Kovalev D and Koch F 2000 Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals Phys. Rev. B 62 12625–7 10.1103/PhysRevB.62.12625 Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals Mimura A, Fujii M, Hayashi S, Kovalev D and Koch F Phys. Rev. 62 B 2000 12625 12627 

  57. [57] Fujii M, Yamaguchi Y, Takase Y, Ninomiya K and Hayashi S 2005 Photoluminescence from impurity codoped and compensated Si nanocrystals Appl. Phys. Lett. 87 211919 10.1063/1.2135214 Photoluminescence from impurity codoped and compensated Si nanocrystals Fujii M, Yamaguchi Y, Takase Y, Ninomiya K and Hayashi S Appl. Phys. Lett. 87 211919 2005 

  58. [58] Fujio K, Fujii M, Sumida K, Hayashi S, Fujisawa M and Ohta H 2008 Electron spin resonance studies of P and B codoped Si nanocrystals Appl. Phys. Lett. 93 021920 10.1063/1.2957975 Electron spin resonance studies of P and B codoped Si nanocrystals Fujio K, Fujii M, Sumida K, Hayashi S, Fujisawa M and Ohta H Appl. Phys. Lett. 93 021920 2008 

  59. [59] Hao X J, Cho E C, Flynn C, Shen Y S, Conibeer G and Green M A 2008 Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix Nanotechnology 19 424019 10.1088/0957-4484/19/42/424019 Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix Hao X J, Cho E C, Flynn C, Shen Y S, Conibeer G and Green M A Nanotechnology 0957-4484 19 42 424019 2008 

  60. [60] Hao X J, Cho E C, Scardera G, Shen Y S, Bellet-Amalric E, Bellet D, Conibeer G and Green M A 2009 Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells Sol. Energy Mater. Sol. C 93 1524–30 10.1016/j.solmat.2009.04.002 Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells Hao X J, Cho E C, Scardera G, Shen Y S, Bellet-Amalric E, Bellet D, Conibeer G and Green M A Sol. Energy Mater. Sol. 93 C 2009 1524 1530 

  61. [61] Hao X J, Cho E C, Flynn C, Shen Y S, Park S C, Conibeer G and Green M A 2009 Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells Sol. Energy Mater. Sol. C 93 273–9 10.1016/j.solmat.2008.10.017 Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells Hao X J, Cho E C, Flynn C, Shen Y S, Park S C, Conibeer G and Green M A Sol. Energy Mater. Sol. 93 C 2009 273 279 

  62. [62] Perez-Wurfl I, Hao X, Gentle A, Kim D-H, Conibeer G and Green M A 2009 Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications Appl. Phys. Lett. 95 153506 10.1063/1.3240882 Si nanocrystal p-i-n diodes fabricated on quartz substrates for third generation solar cell applications Perez-Wurfl I, Hao X, Gentle A, Kim D-H, Conibeer G and Green M A Appl. Phys. Lett. 95 153506 2009 

  63. [63] Zhang P, Zhang X, Xu S, Lu P, Tan D, Xu J, Wang F, Jiang L and Chen K 2017 Phosphorus doping effect on linear and nonlinear optical properties of Si/SiO2 multilayers Opt. Mater. Express 7 304–12 10.1364/OME.7.000304 Phosphorus doping effect on linear and nonlinear optical properties of Si/SiO2 multilayers Zhang P, Zhang X, Xu S, Lu P, Tan D, Xu J, Wang F, Jiang L and Chen K Opt. Mater. Express 7 2017 304 312 

  64. [64] Shan D, Ji Y, Li D, Xu J, Qian M, Xu L and Chen K 2017 Enhanced carrier mobility in Si nano-crystals via nanoscale phosphorus doping Appl. Surf. Sci. 425 492–6 10.1016/j.apsusc.2017.07.011 Enhanced carrier mobility in Si nano-crystals via nanoscale phosphorus doping Shan D, Ji Y, Li D, Xu J, Qian M, Xu L and Chen K Appl. Surf. Sci. 0169-4332 425 2017 492 496 

  65. [65] Li D, Jiang Y, Liu J, Zhang P, Xu J, Li W and Chen K 2017 Modulation of surface states by phosphorus to improve the optical properties of ultra-small Si nanocrystals Nanotechnology 28 475704 10.1088/1361-6528/aa852e Modulation of surface states by phosphorus to improve the optical properties of ultra-small Si nanocrystals Li D, Jiang Y, Liu J, Zhang P, Xu J, Li W and Chen K Nanotechnology 0957-4484 28 47 475704 2017 

  66. [66] Qian M, Shan D, Ji Y, Li D, Xu J, Li W and Chen K 2016 Transition of carrier transport behaviors with temperature in phosphorus-doped si nanocrystals/SiO2 multilayers Nanoscale Res. Lett. 11 346 10.1186/s11671-016-1561-z Transition of carrier transport behaviors with temperature in phosphorus-doped si nanocrystals/SiO2 multilayers Qian M, Shan D, Ji Y, Li D, Xu J, Li W and Chen K Nanoscale Res. Lett. 11 2016 346 

  67. [67] Nakamura T, Adachi S, Fujii M, Sugimoto H, Miura K and Yamamoto S 2015 Size and dopant-concentration dependence of photoluminescence properties of ion-implanted phosphorus- and boron-codoped Si nanocrystals Phys. Rev. B 91 165424 10.1103/PhysRevB.91.165424 Size and dopant-concentration dependence of photoluminescence properties of ion-implanted phosphorus- and boron-codoped Si nanocrystals Nakamura T, Adachi S, Fujii M, Sugimoto H, Miura K and Yamamoto S Phys. Rev. 91 B 165424 2015 

  68. [68] Nakamura T, Adachi S, Fujii M, Miura K and Yamamoto S 2012 Phosphorus and boron codoping of silicon nanocrystals by ion implantation: Photoluminescence properties Phys. Rev. B 85 045441 10.1103/PhysRevB.85.045441 Phosphorus and boron codoping of silicon nanocrystals by ion implantation: Photoluminescence properties Nakamura T, Adachi S, Fujii M, Miura K and Yamamoto S Phys. Rev. 85 B 045441 2012 

  69. [69] Ovchinnikov V, Novikov S, Toivola T and Sinkkonen J 2005 Electroluminescence from b- and p-doped silicon nanoclusters Microelectron. J. 36 502–5 10.1016/j.mejo.2005.02.063 Electroluminescence from b- and p-doped silicon nanoclusters Ovchinnikov V, Novikov S, Toivola T and Sinkkonen J Microelectron. J. 0959-8324 36 2005 502 505 

  70. [70] Kachurin G A, Cherkova S G, Volodin V A, Marin D M, Tetel’baum D I and Becker H 2006 Effect of boron ion implantation and subsequent anneals on the properties of Si nanocrystals Semiconductors 40 72–8 10.1134/S1063782606010131 Effect of boron ion implantation and subsequent anneals on the properties of Si nanocrystals Kachurin G A, Cherkova S G, Volodin V A, Marin D M, Tetel’baum D I and Becker H Semiconductors 40 2006 72 78 

  71. [71] Kachurin G A, Yanovskaya S G, Tetelbaum D I and Mikhailov A N 2003 The effect of implantation of P ions on the photoluminescence of Si nanocrystals in SiO2 layers Semiconductors 37 713–7 10.1134/1.1582541 The effect of implantation of P ions on the photoluminescence of Si nanocrystals in SiO2 layers Kachurin G A, Yanovskaya S G, Tetelbaum D I and Mikhailov A N Semiconductors 37 2003 713 717 

  72. [72] Fujii M, Toshikiyo K, Takase Y, Yamaguchi Y and Hayashi S 2003 Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals J. Appl. Phys. 94 1990–5 10.1063/1.1590409 Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals Fujii M, Toshikiyo K, Takase Y, Yamaguchi Y and Hayashi S J. Appl. Phys. 94 2003 1990 1995 

  73. [73] Xie M, Li D, Chen L, Wang F, Zhu X and Yang D 2013 The location and doping effect of boron in Si nanocrystals embedded silicon oxide film Appl. Phys. Lett. 102 123108 10.1063/1.4798834 The location and doping effect of boron in Si nanocrystals embedded silicon oxide film Xie M, Li D, Chen L, Wang F, Zhu X and Yang D Appl. Phys. Lett. 102 123108 2013 

  74. [74] Shan D, Qian M, Ji Y, Jiang X, Xu J and Chen K 2016 The change of electronic transport behaviors by P and B doping in nano-crystalline silicon films with very high conductivities Nanomaterials 6 233 10.3390/nano6120233 The change of electronic transport behaviors by P and B doping in nano-crystalline silicon films with very high conductivities Shan D, Qian M, Ji Y, Jiang X, Xu J and Chen K Nanomaterials 6 2016 233 

  75. [75] Chen K, Huang X, Xu J and Feng D 1992 Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum-well structures Appl. Phys. Lett. 61 2069–71 10.1063/1.108309 Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum-well structures Chen K, Huang X, Xu J and Feng D Appl. Phys. Lett. 61 1992 2069 2071 

  76. [76] Gutsch S, Laube J, Hiller D, Bock W, Wahl M, Kopnarski M, Gnaser H, Puthen-Veettil B and Zacharias M 2015 Electronic properties of phosphorus doped silicon nanocrystals embedded in SiO2 Appl. Phys. Lett. 106 113103 10.1063/1.4915307 Electronic properties of phosphorus doped silicon nanocrystals embedded in SiO2 Gutsch S, Laube J, Hiller D, Bock W, Wahl M, Kopnarski M, Gnaser H, Puthen-Veettil B and Zacharias M Appl. Phys. Lett. 106 113103 2015 

  77. [77] Gutsch S, Hartel A M, Hiller D, Zakharov N, Werner P and Zacharias M 2012 Doping efficiency of phosphorus doped silicon nanocrystals embedded in a SiO2 matrix Appl. Phys. Lett. 100 233115 10.1063/1.4727891 Doping efficiency of phosphorus doped silicon nanocrystals embedded in a SiO2 matrix Gutsch S, Hartel A M, Hiller D, Zakharov N, Werner P and Zacharias M Appl. Phys. Lett. 100 233115 2012 

  78. [78] Gutsch S, Laube J, Hartel A M, Hiller D, Zakharov N, Werner P and Zacharias M 2013 Charge transport in Si nanocrystal/SiO2 superlattices J. Appl. Phys. 113 133703 10.1063/1.4798395 Charge transport in Si nanocrystal/SiO2 superlattices Gutsch S, Laube J, Hartel A M, Hiller D, Zakharov N, Werner P and Zacharias M J. Appl. Phys. 113 133703 2013 

  79. [79] Li D K, Jiang Y C, Zhang P, Shan D, Xu J, Li W and Chen K J 2017 The phosphorus and boron co-doping behaviors at nanoscale in Si nanocrystals/SiO2 multilayers Appl. Phys. Lett. 110 233105 10.1063/1.4984949 The phosphorus and boron co-doping behaviors at nanoscale in Si nanocrystals/SiO2 multilayers Li D K, Jiang Y C, Zhang P, Shan D, Xu J, Li W and Chen K J Appl. Phys. Lett. 110 233105 2017 

  80. [80] Li D, Lu P, Qian M, Xu J, Li W and Chen K 2017 Doping effect in Si nanocrystals/SiO2 multilayers J. Phys.: Conf. Ser. 864 012012 10.1088/1742-6596/864/1/012012 Doping effect in Si nanocrystals/SiO2 multilayers Li D, Lu P, Qian M, Xu J, Li W and Chen K J. Phys.: Conf. Ser. 1742-6596 864 1 012012 2017 

  81. [81] Lu P, Mu W, Xu J, Zhang X, Zhang W, Li W, Xu L and Chen K 2016 Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication Sci. Rep. 6 22888 10.1038/srep22888 Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication Lu P, Mu W, Xu J, Zhang X, Zhang W, Li W, Xu L and Chen K Sci. Rep. 6 2016 22888 

  82. [82] Lu P, Li D, Zhang P, Tan D, Mu W, Xu J, Li W and Chen K 2016 Time-resolved and temperature-dependent photoluminescence study on phosphorus doped Si quantum dots/SiO2 multilayers with ultra-small dot sizes Opt. Mater. Express 6 3233 10.1364/OME.6.003233 Time-resolved and temperature-dependent photoluminescence study on phosphorus doped Si quantum dots/SiO2 multilayers with ultra-small dot sizes Lu P, Li D, Zhang P, Tan D, Mu W, Xu J, Li W and Chen K Opt. Mater. Express 6 2016 3233 

  83. [83] Hong S H, Park J H, Shin D H, Kim C O, Choi S-H and Kim K J 2010 Doping- and size-dependent photovoltaic properties of p-type Si-quantum-dot heterojunction solar cells: correlation with photoluminescence Appl. Phys. Lett. 97 072108 10.1063/1.3480609 Doping- and size-dependent photovoltaic properties of p-type Si-quantum-dot heterojunction solar cells: correlation with photoluminescence Hong S H, Park J H, Shin D H, Kim C O, Choi S-H and Kim K J Appl. Phys. Lett. 97 072108 2010 

  84. [84] Xu Q, Luo J-W, Li S-S, Xia J-B, Li J and Wei S-H 2007 Chemical trends of defect formation in Si quantum dots: the case of group-III and group-V dopants Phys. Rev. B 75 235304 10.1103/PhysRevB.75.235304 Chemical trends of defect formation in Si quantum dots: the case of group-III and group-V dopants Xu Q, Luo J-W, Li S-S, Xia J-B, Li J and Wei S-H Phys. Rev. 75 B 235304 2007 

  85. [85] Chan T-L, Kwak H, Eom J-H, Zhang S B and Chelikowsky J R 2010 Self-purification in Si nanocrystals: an energetics study Phys. Rev. B 82 115421 10.1103/PhysRevB.82.115421 Self-purification in Si nanocrystals: an energetics study Chan T-L, Kwak H, Eom J-H, Zhang S B and Chelikowsky J R Phys. Rev. 82 B 115421 2010 

  86. [86] Cantele G, Degoli E, Luppi E, Magri R, Ninno D, Iadonisi G and Ossicini S 2005 First-principles study of n- and p-doped silicon nanoclusters Phys. Rev. B 72 113303 10.1103/PhysRevB.72.113303 First-principles study of n- and p-doped silicon nanoclusters Cantele G, Degoli E, Luppi E, Magri R, Ninno D, Iadonisi G and Ossicini S Phys. Rev. 72 B 113303 2005 

  87. [87] Ossicini S, Iori F, Degoli E, Luppi E, Magri R, Poli R, Cantele G, Trani F and Ninno D 2006 Understanding doping in silicon nanostructures IEEE J. Sel. Top. Quantum Electron. 12 1585–91 10.1109/JSTQE.2006.884087 Understanding doping in silicon nanostructures Ossicini S, Iori F, Degoli E, Luppi E, Magri R, Poli R, Cantele G, Trani F and Ninno D IEEE J. Sel. Top. Quantum Electron. 1077-260X 12 2006 1585 1591 

  88. [88] Pi X, Chen X and Yang D 2011 First-principles study of 2.2 nm silicon nanocrystals doped with boron J. Phys. Chem. C 115 9838–43 10.1021/jp2041372 First-principles study of 2.2 nm silicon nanocrystals doped with boron Pi X, Chen X and Yang D J. Phys. Chem. 1932-7447 115 C 2011 9838 9843 

  89. [89] Chen X, Pi X and Yang D 2011 Critical role of dopant location for P-doped Si nanocrystals J. Phys. Chem. C 115 661–6 10.1021/jp1102934 Critical role of dopant location for P-doped Si nanocrystals Chen X, Pi X and Yang D J. Phys. Chem. 1932-7447 115 C 2011 661 666 

  90. [90] Carvalho A, Oberg S, Barroso M, Rayson M J and Briddon P 2012 P-doping of Si nanoparticles: the effect of oxidation Phys. Status Solidi a 209 1847–50 10.1002/pssa.201200149 P-doping of Si nanoparticles: the effect of oxidation Carvalho A, Oberg S, Barroso M, Rayson M J and Briddon P Phys. Status Solidi 0031-8965 209 a 2012 1847 1850 

  91. [91] Chan T L, Tiago M L, Kaxiras E and Chelikowsky J R 2008 Size limits on doping phosphorus into silicon nanocrystals Nano Lett. 8 596–600 10.1021/nl072997a Size limits on doping phosphorus into silicon nanocrystals Chan T L, Tiago M L, Kaxiras E and Chelikowsky J R Nano Lett. 8 2008 596 600 

  92. [92] Ma J, Wei S-H, Neale N R and Nozik A J 2011 Effect of surface passivation on dopant distribution in Si quantum dots: the case of B and P doping Appl. Phys. Lett. 98 173103 10.1063/1.3583663 Effect of surface passivation on dopant distribution in Si quantum dots: the case of B and P doping Ma J, Wei S-H, Neale N R and Nozik A J Appl. Phys. Lett. 98 173103 2011 

  93. [93] Ni Z, Pi X and Yang D 2014 Doping Si nanocrystals embedded in SiO2 with P in the framework of density functional theory Phys. Rev. B 89 035312 10.1103/PhysRevB.89.035312 Doping Si nanocrystals embedded in SiO2 with P in the framework of density functional theory Ni Z, Pi X and Yang D Phys. Rev. 89 B 035312 2014 

  94. [94] Ni Z, Pi X, Cottenier S and Yang D 2017 Density functional theory study on the B doping and B/P codoping of Si nanocrystals embedded in SiO2 Phys. Rev. B 95 075307 10.1103/PhysRevB.95.075307 Density functional theory study on the B doping and B/P codoping of Si nanocrystals embedded in SiO2 Ni Z, Pi X, Cottenier S and Yang D Phys. Rev. 95 B 075307 2017 

  95. [95] Guerra R and Ossicini S 2014 Preferential positioning of dopants and co-dopants in embedded and freestanding Si nanocrystals J. Am. Chem. Soc. 136 4404–9 10.1021/ja5002357 Preferential positioning of dopants and co-dopants in embedded and freestanding Si nanocrystals Guerra R and Ossicini S J. Am. Chem. Soc. 136 2014 4404 4409 

  96. [96] Hiller D, Lopez-Vidrier J, Gutsch S, Zacharias M, Nomoto K and Konig D 2017 Defect-induced luminescence quenching versus charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size Sci. Rep. 7 863 10.1038/s41598-017-01001-1 Defect-induced luminescence quenching versus charge carrier generation of phosphorus incorporated in silicon nanocrystals as function of size Hiller D, Lopez-Vidrier J, Gutsch S, Zacharias M, Nomoto K and Konig D Sci. Rep. 7 2017 863 

  97. [97] Mastromatteo M et al 2016 Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals J. Mater. Chem. C 4 3531–9 10.1039/C5TC04287A Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals Mastromatteo M et al J. Mater. Chem. 4 C 2016 3531 3539 

  98. [98] Mastromatteo M et al 2014 Quantification of phosphorus diffusion and incorporation in silicon nanocrystals embedded in silicon oxide Surf. Interface Anal. 46 393–6 10.1002/sia.5578 Quantification of phosphorus diffusion and incorporation in silicon nanocrystals embedded in silicon oxide Mastromatteo M et al Surf. Interface Anal. 46 2014 393 396 

  99. [99] Perego M, Bonafos C and Fanciulli M 2010 Phosphorus doping of ultra-small silicon nanocrystals Nanotechnology 21 025602 10.1088/0957-4484/21/2/025602 Phosphorus doping of ultra-small silicon nanocrystals Perego M, Bonafos C and Fanciulli M Nanotechnology 0957-4484 21 2 025602 2010 

  100. [100] Dasog M, De los Reyes G B, Titova L V, Hegmann F A and Veinot J G C 2014 Size versus surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups ACS Nano 8 9636–48 10.1021/nn504109a Size versus surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups Dasog M, De los Reyes G B, Titova L V, Hegmann F A and Veinot J G C ACS Nano 8 2014 9636 9648 

  101. [101] Fujii M, Sugimoto H, Hasegawa M and Imakita K 2004 Silicon nanocrystals with high boron and phosphorus concentration hydrophilic shell-Raman scattering and x-ray photoelectron spectroscopic studies J. Appl. Phys. 115 084301 10.1063/1.4866497 Silicon nanocrystals with high boron and phosphorus concentration hydrophilic shell-Raman scattering and x-ray photoelectron spectroscopic studies Fujii M, Sugimoto H, Hasegawa M and Imakita K J. Appl. Phys. 115 084301 2004 

  102. [102] Zhou S, Pi X, Ni Z, Luan Q, Jiang Y, Jin C, Nozaki T and Yang D 2015 Boron- and phosphorus-hyperdoped silicon nanocrystals Part. Part. Syst. Charact. 32 213–21 10.1002/ppsc.201400103 Boron- and phosphorus-hyperdoped silicon nanocrystals Zhou S, Pi X, Ni Z, Luan Q, Jiang Y, Jin C, Nozaki T and Yang D Part. Part. Syst. Charact. 0934-0866 32 2015 213 221 

  103. [103] Hao X J, Cho E C, Scardera G, Bellet-Amalric E, Bellet D, Shen Y S, Huang S, Huang Y D, Conibeer G and Green M A 2009 Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix Thin Solid Films 517 5646–52 10.1016/j.tsf.2009.02.076 Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix Hao X J, Cho E C, Scardera G, Bellet-Amalric E, Bellet D, Shen Y S, Huang S, Huang Y D, Conibeer G and Green M A Thin Solid Films 0040-6090 517 2009 5646 5652 

  104. [104] Perego M, Seguini G and Fanciulli M 2013 ToF-SIMS study of phosphorus diffusion in low-dimensional silicon structures Surf. Interface Anal. 45 386–9 10.1002/sia.5001 ToF-SIMS study of phosphorus diffusion in low-dimensional silicon structures Perego M, Seguini G and Fanciulli M Surf. Interface Anal. 45 2013 386 389 

  105. [105] Perego M et al 2015 Thermodynamic stability of high phosphorus concentration in silicon nanostructures Nanoscale 7 14469–75 10.1039/C5NR02584B Thermodynamic stability of high phosphorus concentration in silicon nanostructures Perego M et al Nanoscale 7 2015 14469 14475 

  106. [106] Fujii M, Mimura A, Hayashi S, Yamamoto Y and Murakami K 2002 Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals Phys. Rev. Lett. 89 206805 10.1103/PhysRevLett.89.206805 Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals Fujii M, Mimura A, Hayashi S, Yamamoto Y and Murakami K Phys. Rev. Lett. 89 206805 2002 

  107. [107] Almeida A J, Sugimoto H, Fujii M, Brandt M S, Stutzmann M and Pereira R N 2016 Doping efficiency and confinement of donors in embedded and free standing Si nanocrystals Phys. Rev. B 93 115425 10.1103/PhysRevB.93.115425 Doping efficiency and confinement of donors in embedded and free standing Si nanocrystals Almeida A J, Sugimoto H, Fujii M, Brandt M S, Stutzmann M and Pereira R N Phys. Rev. 93 B 115425 2016 

  108. [108] Sumida K, Ninomiya K, Fujii M, Fujio K, Hayashi S, Kodama M and Ohta H 2007 Electron spin-resonance studies of conduction electrons in phosphorus-doped silicon nanocrystals J. Appl. Phys. 101 033504 10.1063/1.2432377 Electron spin-resonance studies of conduction electrons in phosphorus-doped silicon nanocrystals Sumida K, Ninomiya K, Fujii M, Fujio K, Hayashi S, Kodama M and Ohta H J. Appl. Phys. 101 033504 2007 

  109. [109] Khoo K H and Chelikowsky J R 2004 First-principles study of vibrational modes and Raman spectra in P-doped Si nanocrystals Phys. Rev. B 89 195309 10.1103/PhysRevB.89.195309 First-principles study of vibrational modes and Raman spectra in P-doped Si nanocrystals Khoo K H and Chelikowsky J R Phys. Rev. 89 B 195309 2004 

  110. [110] Stutzmann M 1987 Hydrogen passivation of boron acceptors in silicon—Raman studies Phys. Rev. B 35 5921–4 10.1103/PhysRevB.35.5921 Hydrogen passivation of boron acceptors in silicon—Raman studies Stutzmann M Phys. Rev. 0163-1829 35 B 1987 5921 5924 

  111. [111] Yu X, Yu W, Wang X, Zheng Y, Zhang J, Jiang Z and Fu G 2015 Effects of phosphorus doping on the optical and electronic properties of Si-quantum-dots/SiO2 multilayer films Superlattices Microstruct. 78 88–96 10.1016/j.spmi.2014.11.031 Effects of phosphorus doping on the optical and electronic properties of Si-quantum-dots/SiO2 multilayer films Yu X, Yu W, Wang X, Zheng Y, Zhang J, Jiang Z and Fu G Superlattices Microstruct. 78 2015 88 96 

  112. [112] Ji Y, Shan D, Qian M, Xu J, Li W and Chen K 2016 Formation of high conductive nano-crystalline silicon embedded in amorphous silicon-carbide films with large optical band gap AIP Adv. 6 105107 10.1063/1.4965922 Formation of high conductive nano-crystalline silicon embedded in amorphous silicon-carbide films with large optical band gap Ji Y, Shan D, Qian M, Xu J, Li W and Chen K AIP Adv. 6 105107 2016 

  113. [113] Solmi S, Parisini A, Angelucci R, Armigliato A, Nobili D and Moro L 1996 Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates Phys. Rev. B 53 7836–41 10.1103/PhysRevB.53.7836 Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates Solmi S, Parisini A, Angelucci R, Armigliato A, Nobili D and Moro L Phys. Rev. 0163-1829 53 B 1996 7836 7841 

  114. [114] Sato K, Niino K, Fukata N, Hirakuri K and Yamauchi Y 2009 The synthesis and structural characterization of boron-doped silicon-nanocrystals with enhanced electroconductivity Nanotechnology 20 365207 10.1088/0957-4484/20/36/365207 The synthesis and structural characterization of boron-doped silicon-nanocrystals with enhanced electroconductivity Sato K, Niino K, Fukata N, Hirakuri K and Yamauchi Y Nanotechnology 0957-4484 20 36 365207 2009 

  115. [115] Zhou S, Ding Y, Pi X and Nozaki T 2014 Doped silicon nanocrystals from organic dopant precursor by a SiCl4-based high frequency nonthermal plasma Appl. Phys. Lett. 105 183110 10.1063/1.4901278 Doped silicon nanocrystals from organic dopant precursor by a SiCl4-based high frequency nonthermal plasma Zhou S, Ding Y, Pi X and Nozaki T Appl. Phys. Lett. 105 183110 2014 

  116. [116] Cabrera N and Mott N F 1948 Theory of the oxidation of metals Rep. Prog. Phys. 12 163–84 10.1088/0034-4885/12/1/308 Theory of the oxidation of metals Cabrera N and Mott N F Rep. Prog. Phys. 0034-4885 12 1948 163 184 

  117. [117] Fujii M, Mimura A, Hayashi S, Yamamoto K, Urakawa C and Ohta H 2000 Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: an electron spin resonance study J. Appl. Phys. 87 1855–7 10.1063/1.372103 Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: an electron spin resonance study Fujii M, Mimura A, Hayashi S, Yamamoto K, Urakawa C and Ohta H J. Appl. Phys. 87 2000 1855 1857 

  118. [118] Veettil B P, Wu L, Jia X, Lin Z, Zhang T, Yang T, Johnson C, McCamey D, Conibeer G and Perez-Wuerfl I 2014 Passivation effects in B doped self-assembled Si nanocrystals Appl. Phys. Lett. 105 222108 10.1063/1.4903776 Passivation effects in B doped self-assembled Si nanocrystals Veettil B P, Wu L, Jia X, Lin Z, Zhang T, Yang T, Johnson C, McCamey D, Conibeer G and Perez-Wuerfl I Appl. Phys. Lett. 105 222108 2014 

  119. [119] Koenig D, Gutsch S, Gnaser H, Wahl M, Kopnarski M, Goettlicher J, Steininger R, Zacharias M and Hiller D 2015 Location and electronic nature of phosphorus in the Si nanocrystal–SiO2 system Sci. Rep. 5 9702 10.1038/srep09702 Location and electronic nature of phosphorus in the Si nanocrystal–SiO2 system Koenig D, Gutsch S, Gnaser H, Wahl M, Kopnarski M, Goettlicher J, Steininger R, Zacharias M and Hiller D Sci. Rep. 5 2015 9702 

  120. [120] Zhou S, Pi X, Ni Z, Ding Y, Jiang Y, Jin C, Delerue C, Yang D and Nozaki T 2015 Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals ACS Nano 9 378–86 10.1021/nn505416r Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals Zhou S, Pi X, Ni Z, Ding Y, Jiang Y, Jin C, Delerue C, Yang D and Nozaki T ACS Nano 9 2015 378 386 

  121. [121] Pi X and Delerue C 2013 Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: a model for localized surface plasmon resonance Phys. Rev. Lett. 111 177402 10.1103/PhysRevLett.111.177402 Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: a model for localized surface plasmon resonance Pi X and Delerue C Phys. Rev. Lett. 111 177402 2013 

  122. [122] Fukata N 2009 Impurity doping in silicon nanowires Adv. Mater. 21 2829–32 10.1002/adma.200900376 Impurity doping in silicon nanowires Fukata N Adv. Mater. 21 2009 2829 2832 

  123. [123] Fano U 1961 Effects of configuration interaction on intensities and phase shifts Phys. Rev. 124 1866 10.1103/PhysRev.124.1866 Effects of configuration interaction on intensities and phase shifts Fano U Phys. Rev. 124 1961 1866 

  124. [124] Cerdeira F, Fjeldly T A and Cardona M 1973 Effect of free carriers on zone-center vibrational modes in heavily doped P-type Si.II. optical modes Phys. Rev. B 8 4734–45 10.1103/PhysRevB.8.4734 Effect of free carriers on zone-center vibrational modes in heavily doped P-type Si.II. optical modes Cerdeira F, Fjeldly T A and Cardona M Phys. Rev. 0556-2805 8 B 1973 4734 4745 

  125. [125] Miller M K and Forbes R G 2009 Atom probe tomography Mater. Charact. 60 461–9 10.1016/j.matchar.2009.02.007 Atom probe tomography Miller M K and Forbes R G Mater. Charact. 1044-5803 60 2009 461 469 

  126. [126] Seidman D N 2007 Three-dimensional atom-probe tomography: advances and applications Annu. Rev. Mater. Res. 37 127–58 10.1146/annurev.matsci.37.052506.084200 Three-dimensional atom-probe tomography: advances and applications Seidman D N Annu. Rev. Mater. Res. 37 2007 127 158 

  127. [127] Kelly T F, Larson D J, Thompson K, Alvis R L, Bunton J H, Olson J D and Gorman B P 2007 Atom probe tomography of electronic materials Annu. Rev. Mater. Res. 37 681–727 10.1146/annurev.matsci.37.052506.084239 Atom probe tomography of electronic materials Kelly T F, Larson D J, Thompson K, Alvis R L, Bunton J H, Olson J D and Gorman B P Annu. Rev. Mater. Res. 37 2007 681 727 

  128. [128] Chen W, Yu L, Misra S, Fan Z, Pareige P, Patriarche G, Bouchoule S and Cabarrocas P R I 2014 Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth Nat. Commun. 5 4134 10.1038/ncomms5134 Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth Chen W, Yu L, Misra S, Fan Z, Pareige P, Patriarche G, Bouchoule S and Cabarrocas P R I Nat. Commun. 5 2014 4134 

  129. [129] Gnaser H, Gutsch S, Wahl M, Schiller R, Kopnarski M, Hiller D and Zacharias M 2014 Phosphorus doping of Si nanocrystals embedded in silicon oxynitride determined by atom probe tomography J. Appl. Phys. 115 034304 10.1063/1.4862174 Phosphorus doping of Si nanocrystals embedded in silicon oxynitride determined by atom probe tomography Gnaser H, Gutsch S, Wahl M, Schiller R, Kopnarski M, Hiller D and Zacharias M J. Appl. Phys. 115 034304 2014 

  130. [130] Nomoto K, Hiller D, Gutsch S, Ceguerra A V, Breen A, Zacharias M, Conibeer G, Perez-Wurfl I and Ringer S P 2017 Atom probe tomography of size-controlled phosphorus doped silicon nanocrystals Phys. Status Solidi 11 1600376 10.1002/pssr.201600376 Atom probe tomography of size-controlled phosphorus doped silicon nanocrystals Nomoto K, Hiller D, Gutsch S, Ceguerra A V, Breen A, Zacharias M, Conibeer G, Perez-Wurfl I and Ringer S P Phys. Status Solidi 11 2017 1600376 

  131. [131] Nomoto K, Gutsch S, Ceguerra A V, Breen A, Sugimoto H, Fujii M, Perez-Wurfl I, Ringer S P and Conibeer G 2016 Atom probe tomography of phosphorus- and boron-doped silicon nanocrystals with various compositions of silicon rich oxide MRS Commun. 6 283–8 10.1557/mrc.2016.37 Atom probe tomography of phosphorus- and boron-doped silicon nanocrystals with various compositions of silicon rich oxide Nomoto K, Gutsch S, Ceguerra A V, Breen A, Sugimoto H, Fujii M, Perez-Wurfl I, Ringer S P and Conibeer G MRS Commun. 6 2016 283 288 

  132. [132] Nomoto K, Sugimoto H, Breen A, Cezguerra A V, Kanno T, Ringer S P, Wurfl I P, Conibeer G and Fujii M 2016 Atom probe tomography analysis of boron and/or phosphorus distribution in doped silicon nanocrystals J. Phys. Chem. C 120 17845–52 10.1021/acs.jpcc.6b06197 Atom probe tomography analysis of boron and/or phosphorus distribution in doped silicon nanocrystals Nomoto K, Sugimoto H, Breen A, Cezguerra A V, Kanno T, Ringer S P, Wurfl I P, Conibeer G and Fujii M J. Phys. Chem. 1932-7447 120 C 2016 17845 17852 

  133. [133] Sakamoto K, Nishi K, Ichikawa F and Ushio S 1987 Segregation and transport-coefficients of impurities at the Si/Sio2 interface J. Appl. Phys. 61 1553–5 10.1063/1.338089 Segregation and transport-coefficients of impurities at the Si/Sio2 interface Sakamoto K, Nishi K, Ichikawa F and Ushio S J. Appl. Phys. 61 1987 1553 1555 

  134. [134] Chen T, Reich K V, Kramer N J, Fu H, Kortshagen U R and Shklovskii B I 2015 Metal–insulator transition in films of doped semiconductor nanocrystals Nat. Mater. 15 299–303 10.1038/nmat4486 Metal–insulator transition in films of doped semiconductor nanocrystals Chen T, Reich K V, Kramer N J, Fu H, Kortshagen U R and Shklovskii B I Nat. Mater. 15 2015 299 303 

  135. [135] Zhou Z Y, Friesner R A and Brus L 2003 Electronic structure of 1 to 2 nm diameter silicon core/shell nanocrystals: surface chemistry, optical spectra, charge transfer, and doping J. Am. Chem. Soc. 125 15599–607 10.1021/ja036443v Electronic structure of 1 to 2 nm diameter silicon core/shell nanocrystals: surface chemistry, optical spectra, charge transfer, and doping Zhou Z Y, Friesner R A and Brus L J. Am. Chem. Soc. 125 2003 15599 15607 

  136. [136] Chen H, Gullanar M H and Shen W Z 2004 Effects of high hydrogen dilution on the optical and electrical properties in B-doped nc-Si:H thin films J. Cryst. Growth 260 91–101 10.1016/j.jcrysgro.2003.08.048 Effects of high hydrogen dilution on the optical and electrical properties in B-doped nc-Si:H thin films Chen H, Gullanar M H and Shen W Z J. Cryst. Growth 0022-0248 260 2004 91 101 

  137. [137] Zhang T, Puthen-Veettil B, Wu L, Jia X, Lin Z, Yang T C-J, Conibeer G and Perez-Wurfl I 2015 Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure J. Appl. Phys. 118 154305 10.1063/1.4933288 Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure Zhang T, Puthen-Veettil B, Wu L, Jia X, Lin Z, Yang T C-J, Conibeer G and Perez-Wurfl I J. Appl. Phys. 118 154305 2015 

  138. [138] Veettil B P et al 2016 Characterisation of active dopants in boron-doped self-assembled silicon nanostructures Appl. Phys. Lett. 109 153106 10.1063/1.4964742 Characterisation of active dopants in boron-doped self-assembled silicon nanostructures Veettil B P et al Appl. Phys. Lett. 109 153106 2016 

  139. [139] Hiller D et al 2017 Boron-incorporating silicon nanocrystals embedded in SiO2: absence of free carriers versus B-induced defects Sci. Rep. 7 8337 10.1038/s41598-017-08814-0 Boron-incorporating silicon nanocrystals embedded in SiO2: absence of free carriers versus B-induced defects Hiller D et al Sci. Rep. 7 2017 8337 

  140. [140] Filonovich S A, Ribeiro M, Rolo A G and Alpuim P 2008 Phosphorous and boron doping of nc-Si:H thin films deposited on plastic substrates at 150 °C by hot-wire chemical vapor deposition Thin Solid Films 516 576–9 10.1016/j.tsf.2007.06.176 Phosphorous and boron doping of nc-Si:H thin films deposited on plastic substrates at 150 °C by hot-wire chemical vapor deposition Filonovich S A, Ribeiro M, Rolo A G and Alpuim P Thin Solid Films 0040-6090 516 2008 576 579 

  141. [141] Song C, Xu J, Chen G, Sun H, Liu Y, Li W, Xu L, Ma Z and Chen K 2010 High-conductive nanocrystalline silicon with phosphorous and boron doping Appl. Surf. Sci. 257 1337–41 10.1016/j.apsusc.2010.08.065 High-conductive nanocrystalline silicon with phosphorous and boron doping Song C, Xu J, Chen G, Sun H, Liu Y, Li W, Xu L, Ma Z and Chen K Appl. Surf. Sci. 0169-4332 257 2010 1337 1341 

  142. [142] Huang S, So Y H, Conibeer G and Green M 2012 Doping of silicon quantum dots embedded in nitride matrix for all-silicon tandem cells Japan. J. Appl. Phys. 51 10NE10 10.7567/JJAP.51.10NE10 Doping of silicon quantum dots embedded in nitride matrix for all-silicon tandem cells Huang S, So Y H, Conibeer G and Green M Japan. J. Appl. Phys. 0021-4922 51 10NE10 2012 

  143. [143] Mott N F 1968 Metal-insulator transition Rev. Mod. Phys. 40 677 10.1103/RevModPhys.40.677 Metal-insulator transition Mott N F Rev. Mod. Phys. 0034-6861 40 1968 677 

  144. [144] Concari S B and Buitrago R H 2004 Hopping mechanism of electric transport in intrinsic and p-doped nanocrystalline silicon thin films J. Non-Cryst. Solids 338 331–5 10.1016/j.jnoncrysol.2004.02.067 Hopping mechanism of electric transport in intrinsic and p-doped nanocrystalline silicon thin films Concari S B and Buitrago R H J. Non-Cryst. Solids 0022-3093 338 2004 331 335 

  145. [145] Wienkes L R, Blackwell C and Kakalios J 2012 Electronic transport in doped mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films Appl. Phys. Lett. 100 072105 10.1063/1.3685491 Electronic transport in doped mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films Wienkes L R, Blackwell C and Kakalios J Appl. Phys. Lett. 100 072105 2012 

  146. [146] Mott N F 1968 Conduction in non-crystalline materials. III. Localized states in a pseudogap and near extremities of conduction and valence bands Phil. Mag. 19 835 10.1080/14786436908216338 Conduction in non-crystalline materials. III. Localized states in a pseudogap and near extremities of conduction and valence bands Mott N F Phil. Mag. 0031-8086 19 1968 835 

  147. [147] Seto J Y W 1975 Electrical properties of polycrystalline silicon films J. Appl. Phys. 46 5247–54 10.1063/1.321593 Electrical properties of polycrystalline silicon films Seto J Y W J. Appl. Phys. 46 1975 5247 5254 

  148. [148] Yanagawa H, Inoue A, Sugimoto H, Shioi M and Fujii M 2017 Photoluminescence enhancement of silicon quantum dot monolayer by plasmonic substrate fabricated by nano-imprint lithography J. Appl. Phys. 122 223101 10.1063/1.5001106 Photoluminescence enhancement of silicon quantum dot monolayer by plasmonic substrate fabricated by nano-imprint lithography Yanagawa H, Inoue A, Sugimoto H, Shioi M and Fujii M J. Appl. Phys. 122 223101 2017 

  149. [149] Imakita K, Ito M, Fujii M and Hayashi S 2009 Nonlinear optical properties of phosphorous-doped Si nanocrystals embedded in phosphosilicate glass thin films Opt. Express 17 7368–76 10.1364/OE.17.007368 Nonlinear optical properties of phosphorous-doped Si nanocrystals embedded in phosphosilicate glass thin films Imakita K, Ito M, Fujii M and Hayashi S Opt. Express 1094-4087 17 2009 7368 7376 

  150. [150] Mimura A, Fujii M, Hayashi S and Yamamoto K 2000 Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films J. Lumin. 87–9 429–31 10.1016/S0022-2313(99)00451-2 Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films Mimura A, Fujii M, Hayashi S and Yamamoto K J. Lumin. 0022-2313 87–9 2000 429 431 

  151. [151] Mimura A, Fujii M, Hayashi S and Yamamoto K 1999 Quenching of photoluminescence from Si nanocrystals caused by boron doping Solid State Commun. 109 561–5 10.1016/S0038-1098(98)00632-2 Quenching of photoluminescence from Si nanocrystals caused by boron doping Mimura A, Fujii M, Hayashi S and Yamamoto K Solid State Commun. 0038-1098 109 1999 561 565 

  152. [152] Fujii M, Mimura A, Hayashi S and Yamamoto K 1999 Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: improvement of photoluminescence efficiency Appl. Phys. Lett. 75 184–6 10.1063/1.124313 Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: improvement of photoluminescence efficiency Fujii M, Mimura A, Hayashi S and Yamamoto K Appl. Phys. Lett. 75 1999 184 186 

  153. [153] Tchebotareva A L, de Dood M J A, Biteen J S, Atwater H A and Polman A 2005 Quenching of Si nanocrystal photoluminescence by doping with gold or phosphorous J. Lumin. 114 137–44 10.1016/j.jlumin.2004.12.014 Quenching of Si nanocrystal photoluminescence by doping with gold or phosphorous Tchebotareva A L, de Dood M J A, Biteen J S, Atwater H A and Polman A J. Lumin. 0022-2313 114 2005 137 144 

  154. [154] Lannoo M, Delerue C and Allan G 1996 Theory of radiative and nonradiative transitions for semiconductor nanocrystals J. Lumin. 70 170–84 10.1016/0022-2313(96)00053-1 Theory of radiative and nonradiative transitions for semiconductor nanocrystals Lannoo M, Delerue C and Allan G J. Lumin. 0022-2313 70 1996 170 184 

  155. [155] Sun H-C, Xu J, Liu Y, Mu W-W, Xu W, Li W and Chen K-J 2011 Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature Chin. Phys. Lett. 28 067802 10.1088/0256-307X/28/6/067802 Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature Sun H-C, Xu J, Liu Y, Mu W-W, Xu W, Li W and Chen K-J Chin. Phys. Lett. 0256-307X 28 6 067802 2011 

  156. [156] Liang D and Bowers J E 2010 Recent progress in lasers on silicon Nat. Photonics 4 511–7 10.1038/nphoton.2010.167 Recent progress in lasers on silicon Liang D and Bowers J E Nat. Photonics 4 2010 511 517 

  157. [157] Imakita K, Ito M, Naruiwa R, Fujii M and Hayashi S 2012 Enhancement of ultrafast nonlinear optical response of silicon nanocrystals by boron-doping Opt. Lett. 37 1877–9 10.1364/OL.37.001877 Enhancement of ultrafast nonlinear optical response of silicon nanocrystals by boron-doping Imakita K, Ito M, Naruiwa R, Fujii M and Hayashi S Opt. Lett. 37 2012 1877 1879 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로