$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Electrical Resistivity of Composites

Journal of the American Ceramic Society, v.73 no.8, 1990년, pp.2187 - 2203  

McLachlan, David S. (Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802) ,  Blaszkiewicz, Michael (Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802) ,  Newnham, Robert E. (Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802)

Abstract AI-Helper 아이콘AI-Helper

Percolation and Bruggeman's effective media theories, as they apply to the electrical conductivity of composites, are reviewed, and a general effective media (GEM) equation, which combines most aspects of both percolation and effective media theories, is introduced. It is then shown that the GEM equ...

주제어

참고문헌 (54)

  1. 1 R. E. Newnham , “ Composite Electroceramics ,” Journal of Materials Education , 7 [ 4 ] 601 – 51 ( 1985 ). 

  2. 2 S. K. Bhattacharya and A. C. D. Chaklader , “ Review of Metal‐Filled Plastics, Part I. Electrical Conductivity ,” Polym.-Plas. Technol. Eng. , 19 , 21 – 36 ( 1982 ). 

  3. 3 A. J. Medalia , “ Electrical Conduction in Carbon Black Composites ,” Rubber Chem. Technol. , 59 , 432 – 54 ( 1986 ). 

  4. 4 E. K. Sichel , J. I. Gittleman , and P. Sheng , “ Transport Properties of the Composite Material Carbon‐Polyvinylchloride ,” Phys. Rev. , B18 , 5712 – 16 ( 1978 ). 

  5. 5 L. K. H. van Beek and B. I. C. F. van Pul , “ Non Ohmic Behavior of Carbon Black Loaded Rubbers ,” Carbon , 2 , 121 – 26 ( 1964 ). 

  6. 6 R. D. Sherman , L. M. Middleman , and S. M. Jacobs , “ Electron Transport Processes in Conductive Filled Polymers ,” Polym. Eng. Sci. , 23 , 36 – 46 ( 1983 ). 

  7. 7 I. Balberg , “ Tunnelling and Nonuniversal Conductivity in Composite Materials ,” Phys. Rev. Lett. , 59 , 1305 – 308 ( 1987 ). 

  8. 8 R. E. Newnham , D. P. Skinner , and L. E. Cross , “ Connectivity and Piezoelectric‐Pyroelectric Composites ,” Mater. Res. Bull. , 13 , 525 – 36 ( 1978 ). 

  9. 9 R. Landauer , “ Electrical Conductivity in Inhomogeneous Media ”; pp. 2 – 45 in American Institute of Physics Conference Proceedings, No., 40, Electrical Transport and Optical Properties of Inhomogeneous Media . Edited by J. C. Garland and D. B. Tanner . American Institute of Physics , New York , 1978 . 

  10. 10 R. E. Meredith and C. W. Tobias , “ Conduction in Heterogeneous Systems ”; pp. 15 – 47 in Advances in Electrochemistry and Electrochemical Engineering , Vol. 2 . Edited by C. W. Tobias . Interscience , New York , 1962 . 

  11. 11 P. N. Sen , C. Scala , and M. H. Cohen , “ A Self‐Similar Model for Sedimentary Rocks with an Application to the Dielectric Constant of Fused Glass Beads ,” Geophysics , 46 , 781 – 95 ( 1981 ). 

  12. 12 D. S. McLachlan , “ Measurement and Analysis of a Model Dual‐Conductivity Medium Using a Generalized Effective‐Medium Theory ,” J. Phys. C: Solid State Phys. , C21 , 1521 – 32 ( 1988 ). 

  13. 13 F. Brouers , “ Percolation Threshold and Conductivity in Metal‐Insulator Composite Mean‐Field Theories ,” J. Phys. C: Solid State Phys. , C19 , 7183 – 93 ( 1987 ). 

  14. 14 G. A. Niklasson and C. G. Granquist , “ Optical Properties and Solar Selectivity of Coevaporated Co‐Al 2 O 3 Composite Films ,” J. Appl. Phys. , 55 , 3382 – 410 ( 1984 ). 

  15. 15 R. Landauer , “ The Electrical Resistance of Binary Metallic Mixtures ,” J. Appl. Phys. , 23 , 779 – 84 ( 1952 ). 

  16. 16 J. P. Straley , “ Scaling Predictions for Physical Properties ”; pp. 353 – 66 in Annals of the Israel Physical Society, Percolation Processes and Structures , Vol. 5 . Edited by G. Deutscher , R. Zallen , and J. Adler . Israel Physical Society , Jerusalem , Israel , 1983 . 

  17. 17 R. Zallen , The Physics of Amorphous Solids ; Ch. 4. Wiley , New York , 1983 . 

  18. 18 D. Stauffer , Introduction to Percolation Theory . Taylor and Francis , London , U.K. , 1985 . 

  19. 19 G. Deutscher , A. Kapitulnik , and M. Rappaport , “ Percolation in Metal‐Insulator Systems ”; pp. 207 – 28 in Annals of the Israel Physical Society, Percolation Processes and Structures , Vol. 5 . Edited by G. Deutscher , R. Zallen , and J. Adler . Israel Physical Society , Jerusalem , Israel , 1983 . 

  20. 20 J. P. Fitzpatrick , R. B. Malt , and F. Spaepen , “ Percolation Theory and the Conductivity of Random Close Packed Mixtures of Hard Spheres ,” Phys. Lett. , A47 , 207 – 208 ( 1974 ). 

  21. 21 P. G. de Gennes , “ On a Relation Between Percolation Theory and the Elasticity of Gels ,” J. Phys. Lett. , 37 , L1 – L2 ( 1976 ). 

  22. 22 A. Skal and B. Shklovskii , “ Topology of an Infinite Cluster in the Theory of Percolation and Its Relationship to the Theory of Hopping Conduction ,” Sov. Phys. Semicond. (Engl. Transl.) , 8 , 1024 – 32 ( 1975 ). 

  23. 23 B. Jouhier , C. Allain , B. Gauther‐Manuel , and E. Guyon , “ The Sol‐Gel Transition ”; pp. 167 – 86 in Annals of the Israel Physical Society, Percolation Processes and Structures , Vol. 5 . Edited by G. Deutscher , R. Zallen , and J. Adler . Israel Physical Society , Jerusalem , Israel , 1983 . 

  24. 24 J. Gurland , “ An Estimate of Contact and Continuity of Dispersions in Opaque Samples ,” Trans. Metall. Soc. AIME , 236 , 642 – 46 ( 1966 ). 

  25. 25 J. W. Halley , “ Polychromatic Percolation ”; pp. 323 – 52 in Annals of the Israel Physical Society, Percolation Processes and Structures , Vol. 5 . Edited by G. Deutscher , R. Zallen , and J. Adler Israel Physical Society , Jerusalem , Israel , 1983 . 

  26. 26 F. Carmona , R. Conet , and P. Delhaes , “ Piezoresistivity of Heterogeneous Solids ,” J. Appl. Phys. , 61 , 2550 – 57 ( 1987 ). 

  27. 27 N. Deprez and D. S. McLachlan , “ The Analysis of the Electrical Conductivity of Graphite Powders During Compaction ,” J. Phys. D: Appl. Phys. , D21 , 101 – 107 ( 1988 ). 

  28. 28 D. S. McLachlan , “ Equation for the Conductivity of Metal‐Insulator Mixtures ,” J. Phys. C: Solid State Phys. , C18 , 1891 – 97 ( 1985 ). 

  29. 29 D. S. McLachlan , “ A New Interpretation of Percolation Conductivity Results and Large Critical Regimes ,” Solid State Commun. , 60 , 821 – 25 ( 1986 ). 

  30. 30 D. S. McLachlan , “ An Equation for the Conductivity of Binary Mixtures with Anisotropic Grain Structures ,” J. Phys. C: Solid State Phys. , C20 , 865 – 77 ( 1987 ). 

  31. 31 D. S. McLachlan , “ Equations for the Conductivity of Macroscopic Mixtures ,” J. Phys. C: Solid State Phys. , C19 , 1339 – 54 ( 1986 ). 

  32. 32 D. S. McLachlan , “ Equation for the Conductivity of Heterogeneous Binary Media ,” Jpn. J. Appl. Phys. , 26 [ Suppl 26–3 ] 901 – 902 ( 1987 ). 

  33. 33 D. S. McLachlan and J. P. Burger , “ An Analysis of the Electrical Conductivity of the Two Phase PdH x System ,” Solid State Commun. , 65 , 159 – 61 ( 1988 ). 

  34. 34 D. S. McLachlan , “ Morphology Dependence of the Resistivity and Meissner Curves in Two‐Phase Superconductors ,” Solid State Commun. , 69 , 925 – 29 ( 1989 ). 

  35. 35 N. Deprez , D. S. McLachlan , and I. Sigalas , “ The Measurement and Comparative Analysis of the Electrical and Thermal Conductivities, Permeability and Young's Modulus of Sintered Nickel ,” Solid State Commun. , 66 , 869 – 72 ( 1988 ). 

  36. 36 D. S. McLachlan , “ The Complex Permittivity of Emulsions: An Effective Media‐Percolation Equation ,” Solid State Commun. , 72 , 925 – 29 ( 1989 ). 

  37. 37 K. Lichtenecker , “ Resistance Calculation for Alloys Free of Solid Solution ” (in Ger.), Phys. Z. , 10 , 1005 – 1008 ( 1909 ). 

  38. 38 C. J. F. Böttcher , Theory of Electric Polarisation ; pp. 415 – 20 . Elsevier , New York , 1952 . 

  39. 39 Z. Hashin and S. Shtrikman , “ A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials ,” J. Appl. Phys. , 33 , 3125 – 31 ( 1962 ). 

  40. 40 S. M. Aharoni , “ Electrical Resistivity of a Composite of Conducting Particles in an Insulating Matrix ,” J. Appl. Phys. , 43 , 2463 – 65 ( 1972 ). 

  41. 41 S. N. Roberts and L. M. Schwartz , “ Grain Consolidation and Electrical Conductivity in Porous Media ,” Phys. Rev. B: Condens. Mater. , B31 , 5990 – 97 ( 1985 ). 

  42. 42 A. Malliaris and D. T. Turner , “ Influence of Particle Size on the Electrical Resistivity of Compacted Mixtures of Polymeric and Metallic Powders ,” J. Appl. Phys. , 42 , 614 – 18 ( 1971 ). 

  43. 43 R. P. Kusy , “ Influence of Particle Size Ratio on the Continuity of Aggregates ,” J. Appl. Phys. , 48 , 5301 – 305 ( 1977 ). 

  44. 44 F. Carmona , F. Barreau , P. Delhaes , and R. Conet , “ Experimental Model for Studying the Effect of Anisotropy and Percolation Conduction ,” J. Phys. Lett. , 41 , L531 – L534 ( 1980 ). 

  45. 45 P. F. Carcia , A. Ferretti , and A. Suna , “ Particle Size Effects in Thick Film Resistors ,” J. Appl. Phys. , 53 , 5282 – 88 ( 1982 ). 

  46. 46 G. E. Pike , “ Electrical Transport and Optical Properties of Inhomogeneous Media ”; pp. 366 – 71 in American Institute of Physics Conference Proceedings, No. 40, Electrical Transport and Optical Properties of Inhomogeneous Media . Edited by J. C. Garland and D. B. Tanner . American Institute of Physics , New York , 1978 . 

  47. 47 I. Balberg , C. H. Anderson , S. Alexander , and N. Wagner , “ Excluded Volume and Its Relation to the Onset of Percolation ,” Phys. Rev. B: Condens. Mater. , B30 , 3933 – 43 ( 1984 ). 

  48. 48 M. Blaszkiewicz , D. S. McLachlan , and R. E. Newnham , “ Morphology and Temperature Dependence of the Resistivity in Carbon Black and Graphite Polymer Composites: An Effective Media‐Percolation Approach ”; unpublished work. 

  49. 49 S. Yoshikawa , T. Ota , R. E. Newnham , and A. Amin , “ Piezoresistivity in Polymer‐Ceramic Composites ,” J. Am. Ceram. Soc. , 73 , 263 – 67 ( 1990 ). 

  50. 50 M. Blaszkiewicz , D. S. McLachlan , and R. E. Newnham , “ A Study of the Temperature and Pressure Dependence of the Resistivity in a Ceramic‐Polymer Composite Using a General Effective Media Equation ”; unpublished work. 

  51. 51 B. Lundberg and B. Sundqvist , “ Resistivity of a Composite Conducting Polymer as a Function of Temperature, Pressure and Environment; Applications as a Pressure and Gas Concentration Transducer J. Appl. Phys. , 60 , 1074 – 79 ( 1986 ). 

  52. 52 G. R. Ruschau , R. E. Newnham , J. Runt , and B. E. Smith , “ 0–3 Ceramic/Polymer Composite Chemical Sensors ,” Sens. Actuators , 20 , 269 – 75 ( 1989 ). 

  53. 53 D. M. Moffatt , J. P. Runt , A. Halliyal , and R. E. Newnham , “ Metal Oxide‐Polymer Thermistors ,” J. Mater. Sci. , 24 , 609 – 14 ( 1989 ). 

  54. 54 D. S. McLachlan , “ A Quantitative Analysis of the Volume Fraction Dependence of the Resistivity of Cermets Using a General Effective Media Equation ”; to be published in J. Appl. Phys. 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로