최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Biochip journal, v.12 no.1, 2018년, pp.1 - 10
Park, Moonseong , Kang, Byoung-Hoon , Jeong, Ki-Hun
Biomolecules in human body serve as biomarker for diagnosis of diseases, and paper-based biochips have become of much interest for development of biomolecule sensing. Cellulose micro-/nanofiber matrices consisting of paper allow not only capillary-driven flow without external pumping owing to abunda...
Nature J.C. Milne 450 712 2007 10.1038/nature06261 Milne, J.C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-726 (2007).
Adv. Mater. Y.-J. Oh 24 2234 2012 10.1002/adma.201104696 Oh, Y.-J. & Jeong, K.-H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 24, 2234-2237 (2012).
Science A. Camilli 311 1113 2006 10.1126/science.1121357 Camilli, A. & Bassler, B.L. Bacterial small-molecule signaling pathways. Science 311, 1113-1116 (2006).
Mol. Genet. Metab. M. Lucock 71 121 2000 10.1006/mgme.2000.3027 Lucock, M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab. 71, 121-138 (2000).
ACS Appl. Mater. Interfaces C. Hu 5 4760 2013 10.1021/am4000485 Hu, C. et al. Fabrication of reduced graphene oxide and silver nanoparticle hybrids for Raman detection of absorbed folic acid: a potential cancer diagnostic probe. ACS Appl. Mater. Interfaces 5, 4760-4768 (2013).
Nature J.K. Nicholson 455 1054 2008 10.1038/4551054a Nicholson, J.K. & London, J.C. Systems biology: metabonomics. Nature 455, 1054-1056 (2008).
Cell A. Qui 127 917 2006 10.1016/j.cell.2006.09.041 Qui, A. et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127, 917-928 (2006).
Cytokine Growth Factor Rev. C.C. Hong 20 409 2009 10.1016/j.cytogfr.2009.10.021 Hong, C.C. & Yu, P.B. Application of small molecule BMP inhibitors in physiology and disease. Cytokine Growth Factor Rev. 20, 409-418 (2009).
Lancet A. Dehghan 372 1953 2008 10.1016/S0140-6736(08)61343-4 Dehghan, A. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953-1961 (2008).
ACS Nano M. Park 11 438 2017 10.1021/acsnano.6b06196 Park, M., Jung, H., Jeong, Y. & Jeong, K.-H. Plasmonic Schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 11, 438-443 (2017).
Innest. Ophthalmol. Visual Sci. C.K.M. Choy 41 3293 2000 Choy, C.K.M., Benzie, I.F.F. & Cho, P. Ascorbic acid concentration and total antioxidant activity of human tear fluid measured using the FRASC assay. Innest. Ophthalmol. Visual Sci. 41, 3293-3298 (2000).
Eur J. Neurol. E.-J. Kim 19 488 2012 10.1111/j.1468-1331.2011.03570.x Kim, E.-J. et al. Glucose metabolism in sporadic Creutzfeldt-Jakob disease: an SPM analysis of F-FDG PET. Eur J. Neurol. 19, 488-493 (2012).
2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biomed. J. S. Hestrin 58 345 1954 Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biomed. J. 58, 345-352 (1954).
J. Ferment. Bioeng. S. Masaoka 75 18 1993 10.1016/0922-338X(93)90171-4 Masaoka, S., Ohe, T. & Sakota, N. Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75, 18-22 (1993).
Biomicrofluidics J.H. Shin 8 054121 2014 10.1063/1.4899773 Shin, J.H., Park, J., Kim, S.H. & Park, J.-K. Programmed sample delivery on a pressurized paper. Biomicrofluidics 8, 054121 (2014).
Proc. Natl. Acad. Sci. U. S. A. A.W. Martinez 105 19606 2008 10.1073/pnas.0810903105 Martinez, A.W., Phillips, S.T. & Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. U. S. A. 105, 19606-19611 (2008).
Lab Chip J. Yu 11 1286 2011 10.1039/c0lc00524j Yu, J., Ge, L., Huang, J., Wang, S. & Ge, S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11, 1286-1291 (2011).
Anal. Chem. J.H. Shin 88 10374 2016 10.1021/acs.analchem.6b02869 Shin, J.H. & Park, J.-K. Functional packaging of lateral flow strip allows simple delivery of multiple reagents for multistep assays. Anal. Chem. 88, 10374-10378 (2016).
Anal. Bioanal. Chem. T. Teerinen 406 5955 2014 10.1007/s00216-014-8001-7 Teerinen, T., Lappalainen, T. & Erho, T. A paper-based lateral flow assay for morphine. Anal. Bioanal. Chem. 406, 5955-5965 (2014).
Biomaterials J. Miao 32 9557 2011 10.1016/j.biomaterials.2011.08.080 Miao, J. et al. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32, 9557-9567 (2011).
J. Hazard. Mater. J. Yang 189 377 2011 10.1016/j.jhazmat.2011.02.048 Yang, J. et al. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J. Hazard. Mater. 189, 377-384 (2011).
N. Engl. J. Med. A.J. Wilcox 340 1796 1999 10.1056/NEJM199906103402304 Wilcox, A.J., Baird, D.D. & Weinberg, C.R. Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med. 340, 1796-1799 (1999).
Adv. Mater. A. Russo 23 3426 2011 10.1002/adma.201101328 Russo, A. et al. Pen-on-paper flexible electronics. Adv. Mater. 23, 3426-3430 (2011).
Small L. Polavarapu 10 3065 2014 10.1002/smll.201400438 Polavarapu, L., Porta, A.L., Novikov, S.M., Coronado-Puchau, M. & Liz-Marzán, L.M. Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates. Small 10, 3065-3071 (2014).
Anal. Chem. C.H. Lee 83 8953 2011 10.1021/ac2016882 Lee, C.H., Hankus, M.E., Tian, L., Pellegrino, P.M. & Singamaneni, S. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal. Chem. 83, 8953-8958 (2011).
Analyst W.W. Yu 138 3679 2013 10.1039/c3an00673e Yu, W.W. and White, I.M. Chromatographic separation and detection of target analytes from complex samples using inkjet-printed SERS substrates. Analyst 138, 3679-3686 (2013).
Analyst W.W. Yu 138 1020 2013 10.1039/C2AN36116G Yu, W.W. and White, I.M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138, 1020-1025 (2013).
J. Am. Chem. Soc. H. Liu 133 17564 2011 10.1021/ja2071779 Liu, H. and Crooks, R.M. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 133, 17564-17566 (2011).
Angew. Chem. Int. Ed. H. Liu 51 6925 2012 10.1002/anie.201202929 Liu, H., Siang, Y., Lu, Y. & Crooks, R.M. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew. Chem. Int. Ed. 51, 6925-6928 (2012).
Adv. Funct. Mater. R.V. Martinez 22 1376 2012 10.1002/adfm.201102978 Martinez, R.V., Fish, C.R., Chen, X. & Whitesides, G.M. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376-1384 (2012).
Lab Chip L. Ge 12 3150 2012 10.1039/c2lc40325k Ge, L., Wang, S., Song, X., Ge, S. & Yu, J. 3D origamibased multifunction-integrated immunodevice: lowcost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12, 3150-3158 (2012).
Analyst W. Dungchai 136 77 2011 10.1039/C0AN00406E Dungchai, W., Chailapakul, O. & Henry, C.S. A lowcost, simple, and rapid fabrication method for paperbased microfluidics using wax screen-printing. Analyst 136, 77-82 (2011).
Electrophoresis Y. Lu 30 1497 2009 10.1002/elps.200800563 Lu, Y., Shi, W., Jiang, L., Qin, J. & Lin, B. Rapid prototyping of paper-based microfluidics with wax for lowcost, portable bioassay. Electrophoresis 30, 1497-1500 (2009).
Anal. Chem. E. Carrilho 81 7091 2009 10.1021/ac901071p Carrilho, E., Martinez, A.W., Whitesides, G.M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091-7095 (2009).
Lab Chip G.G. Lewis 12 2630 2012 10.1039/c2lc40331e Lewis, G.G., DiTucci, M.J., Baker, M.S. & Phillips, S.T. High throughput method for prototyping threedimensional, paper-based microfluidic devices. Lab Chip 12, 2630-2633 (2012).
Anal. Chem. Y. Lu 82 329 2010 10.1021/ac9020193 Lu, Y., Shi, W., Qin, J. & Lin, B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal. Chem. 82, 329-335 (2010).
Anal. Chem. A.W. Martinez 80 3699 2008 10.1021/ac800112r Martinez, A.W. et al. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80, 3699-3707 (2008).
Sens. Actuators B J. Park 246 1049 2017 10.1016/j.snb.2017.02.150 Park, J. & Park, J.-K. Pressed region integrated 3D paper-based microfluidic device that enables vertical flow multistep assays for the detection of C-reactive protein based on programmed reagent loading. Sens. Actuators B 246, 1049-1055 (2017).
Biomicrofluidics Y. Oh 10 014102 2016 10.1063/1.4939434 Oh, Y., Lee, H., Son, S.Y., Kim, S.J. & Kim, P. Capililarity ion concentration polarization for spontaneous biomolecular preconcentration mechnism. Biomicrofluidics 10, 014102 (2016).
Biosens. Bioelectron. M. Kong 96 173 2017 10.1016/j.bios.2017.05.010 Kong, M., Shin, J.H., Heu, S., Park, J.-K. & Ryu, S. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens. Bioelectron. 96, 173-177 (2017).
Biosensors and Bioelectronics N.H.A. Raston 93 21 2017 10.1016/j.bios.2016.11.061 Raston, N.H.A., Nguyen, V.T. & Gu, M.B. A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosensors and Bioelectronics 93, 21-25 (2017).
Nanoscale J. Hwang 8 11418 2016 10.1039/C5NR07243C Hwang, J., Lee, S., Choo, J. Application of a SERSbased lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enteroxin B. Nanoscale 8, 11418 (2016).
Micromachines J. Park 7 48 2016 10.3390/mi7030048 Park, J., Shin, J.H. & Park, J.-K. Experimental analysis of porosity and permeability in pressed paper. Micromachines 7, 48 (2016).
Anal. Chem. J. Park 88 3781 2016 10.1021/acs.analchem.5b04743 Park, J., Shin, J.H. & Park, J.-K. Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Anal. Chem. 88, 3781-3788 (2016).
Anal. Chem. J.L. Delaney 83 1300 2011 10.1021/ac102392t Delaney, J.L. & Hogan, C.F., Tian, J. & Shen, W. Electrogenerated chemiluminescence detection in paperbased microfluidic sensors. Anal. Chem. 83, 1300-1306 (2011).
Anal. Bioanal. Chem. L. Ge 31 212 2012 Ge, L., Yu, J., Ge, S. & Yan, M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal. Bioanal. Chem. 31, 212-218 (2012).
Biosens. Bioelectron. S. Wang 31 212 2012 10.1016/j.bios.2011.10.019 Wang, S. et al. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 31, 212-218 (2012).
Appl. Environ. Microbiol. J. Fletcher 53 183 1987 10.1128/AEM.53.1.183-184.1987 Fletcher, J. Filter-paper dot-immunobinding assay for detection of spiroplasma-citri. Appl. Environ. Microbiol. 53, 183-184 (1987).
J. Clin. Microbiol. R.L. Heberling 23 109 1986 10.1128/JCM.23.1.109-113.1986 Heberling, R.L. & Kalter, S.S. Rapid dot-immunobinding assay on nitrocellulose for viral antibodies. J. Clin. Microbiol. 23, 109-113 (1986).
J. Mater. Chem. B H.-J. Yoon 3 2935 2015 10.1039/C4TB01759E Yoon, H.-J., Lee, E.-S., Kang, M., Jeong, Y. & Park, J.-H. In vivo multi-photon luminescence imaging of cerebral vasculature and blood-brain barrier integrity using gold nanoparticles. J. Mater. Chem. B 3, 2935-2938 (2015).
Annu. Rev. Anal. Chem. P.L. Stiles 1 601 2008 10.1146/annurev.anchem.1.031207.112814 Stiles, P.L., Dieringer, J.A., Shah, N.C. & Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601-626 (2008).
Adv. Opt. Mater. T.-W. Chang 3 1397 2015 10.1002/adom.201500092 Chang, T.-W. et al. Bifunctional nano lycurgus cup array plasmonic sensor for colorimetric sensing and surface-enhanced Raman spectroscopy. Adv. Opt. Mater. 3, 1397-1404 (2015).
Opt. Exp. T.J. Seok 21 16561 2013 10.1364/OE.21.016561 Seok, T.J., Jamshidi, A., Eggleston, M. & Wu, M.C. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap. Opt. Exp. 21, 16561-16569 (2013).
Langmuir H. Chen 24 5233 2008 10.1021/la800305j Chen, H., Kou, X., Yang, Z., Ni, W. & Wang, J. Shapeand size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24, 5233-5237 (2008).
ACS Nano D.Y. Lei 4 432 2010 10.1021/nn901310k Lei, D.Y. et al. Geometry dependence of surface plasmon polarition lifetimes in nanohole arrays. ACS Nano 4, 432-438 (2010).
J. Phys. Chem. B T.R. Jensen 103 9846 1999 10.1021/jp9926802 Jensen, T.R. et al. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103, 9846-9853 (1999).
Nano Lett. J. Zhang 8 1179 2009 10.1021/nl080093z Zhang, J. et al. Single-cell fluorescence imaging using metal plasmon-coupled probe 2: single-molecule counting on lifetime image. Nano Lett. 8, 1179-1186 (2009).
ACS Nano K. Sugawa 7 9997 2013 10.1021/nn403925d Sugawa, K. et al. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. ACS Nano 7, 9997-10010 (2013).
Light: Sci. Appl. S.G. Hong 4 e267 2015 10.1038/lsa.2015.40 Hong, S.G., Lee, M.Y., Jackson, A.O. & Lee, L.P. Bioinspired optical antennas: gold plant viruses. Light: Sci. Appl. 4, e267 (2015).
Small M. Park 11 2487 2015 10.1002/smll.201402942 Park, M., Oh, Y.-J., Park, S.-G., Yang, S.-B. & Jeong, K.-H. Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface-enhanced Raman scattering. Small 11, 2487-2492 (2015).
J. Colloid Interface Sci. D. Wu 265 234 2003 10.1016/S0021-9797(03)00348-5 Wu, D. & Fang, Y. The adsorption behavior of p-hydroxybenzoic acid on a silver-coated filter paper by surface enhanced Raman scattering. J. Colloid Interface Sci. 265, 234-238 (2003).
J. Colloid Interface Sci. Z. Luo 283 459 2005 10.1016/j.jcis.2004.09.001 Luo, Z. and Fang, Y. SERS of C60/C70 on gold-coated filter paper on filter film influenced by the gold thickness. J. Colloid Interface Sci. 283, 459-463 (2005).
Colloid Surf., A L. Zhang 468 309 2015 10.1016/j.colsurfa.2014.12.056 Zhang, L. et al. Cellulose nanofibre textured SERS substrate. Colloid Surf., A 468, 309-314 (2015).
Colloid Surf., A Y.H. Ngo 420 46 2013 10.1016/j.colsurfa.2012.12.018 Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Effect of cationic polyacrylamide dissolution on the absorption state of gold nanoparticles on paper and their surface enhanced Raman scattering properties. Colloid Surf., A 420, 46-52 (2013).
J. Colloid Interface Sci. Y.H. Ngo 392 237 2013 10.1016/j.jcis.2012.09.080 Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J. Colloid Interface Sci. 392, 237-246 (2013).
J. Colloid Interface Sci. Y.H. Ngo 409 59 2013 10.1016/j.jcis.2013.07.051 Ngo, Y.H., Then, W.L., Shen, W. & Garnier, G. Gold nanoparticles paper as a SERS bio-diagnostic platform. J. Colloid Interface Sci. 409, 59-65 (2013).
AIChE J. D.R. Ballerini 60 1598 2014 10.1002/aic.14398 Ballerini, D.R. et al. Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AIChE J. 60, 1598-1605 (2014).
Anal. Chem. L. Tian 84 9928 2012 10.1021/ac302332g Tian, L. et al. Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Anal. Chem. 84, 9928-9934 (2012).
Anal. Chem. A. Abbas 85 3977 2013 10.1021/ac303567g Abbas, A. et al. Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal. Chem. 85, 3977-3983 (2013).
Sci. Rep. S. Tadepalli 5 16206 2015 10.1038/srep16206 Tadepalli, S. et al. Peptide-functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmoic paper devices. Sci. Rep. 5, 16206 (2015).
RSC Adv. A.L. Schmucker 6 4136 2016 10.1039/C5RA21977A Schmucker, A.L. et al. Plasmonic paper: a porous and flexible substrate enabling nanoparticle-based combinatorial chemistry. RSC Adv. 6, 4136-4144 (2016).
J. Phys. Chem. C M.B. Ross 120 20789 2016 10.1021/acs.jpcc.6b02019 Ross, M.B. et al. Structure-function relationships for surface-enhanced Raman spectroscopy-active plasmonic paper. J. Phys. Chem. C 120, 20789-20797 (2016).
Sens. Actuators B C. Wang 231 357 2016 10.1016/j.snb.2016.03.030 Wang, C., Liu, B. & Dou, X. Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sens. Actuators B 231, 357-364 (2016).
Anal. Chim. Acta M.-L. Cheng 708 89 2011 10.1016/j.aca.2011.10.013 Cheng, M.-L., Tsai, B.-C. & Yang, J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal. Chim. Acta 708, 89-96 (2011).
J. Raman Spectrosc. P. Rajapandiyan 45 574 2014 10.1002/jrs.4502 Rajapandiyan, P. & Yang, J. Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. J. Raman Spectrosc. 45, 574-580 (2014).
Talanta Y. Li 147 493 2016 10.1016/j.talanta.2015.10.025 Li, Y. et al. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147, 493-500 (2016).
Talanta K. Zhang 162 52 2017 10.1016/j.talanta.2016.10.020 Zhang, K., Qing, J., Gao, H., Ji, J. & Liu, B. Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis. Talanta 162, 52-56 (2017).
Anal. Chem. W.W. Yu 82 9626 2010 10.1021/ac102475k Yu, W.W. & White, I.M. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal. Chem. 82, 9626-9630 (2010).
Anal. Chim. Acta A.G. Berger 949 59 2017 10.1016/j.aca.2016.10.035 Berger, A.G., Restaino, S.M. & White, I.M. Verticalflow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal. Chim. Acta 949, 59-66 (2017).
Anal. Methods W. Zhang 6 2066 2014 10.1039/C4AY00046C Zhang, W. et al. Brushing, a simple way to fabricate SERS active paper substrates. Anal. Methods 6, 2066-2071 (2014).
ACS Appl. Mater. Interfaces K. Zhang 7 16767 2015 10.1021/acsami.5b04534 Zhang, K. et al. Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl. Mater. Interfaces 7, 16767-16774 (2015).
Light: Sci. Appl. H. Jung 5 e16009 2016 10.1038/lsa.2016.9 Jung, H., Park, M., Kang, M. & Jeong, K.-H. Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules. Light: Sci. Appl. 5, e16009 (2016).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.