$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Paper-Based Biochip Assays and Recent Developments: A Review

Biochip journal, v.12 no.1, 2018년, pp.1 - 10  

Park, Moonseong ,  Kang, Byoung-Hoon ,  Jeong, Ki-Hun

Abstract AI-Helper 아이콘AI-Helper

Biomolecules in human body serve as biomarker for diagnosis of diseases, and paper-based biochips have become of much interest for development of biomolecule sensing. Cellulose micro-/nanofiber matrices consisting of paper allow not only capillary-driven flow without external pumping owing to abunda...

참고문헌 (82)

  1. Nature J.C. Milne 450 712 2007 10.1038/nature06261 Milne, J.C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-726 (2007). 

  2. Adv. Mater. Y.-J. Oh 24 2234 2012 10.1002/adma.201104696 Oh, Y.-J. & Jeong, K.-H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 24, 2234-2237 (2012). 

  3. Science A. Camilli 311 1113 2006 10.1126/science.1121357 Camilli, A. & Bassler, B.L. Bacterial small-molecule signaling pathways. Science 311, 1113-1116 (2006). 

  4. Mol. Genet. Metab. M. Lucock 71 121 2000 10.1006/mgme.2000.3027 Lucock, M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab. 71, 121-138 (2000). 

  5. ACS Appl. Mater. Interfaces C. Hu 5 4760 2013 10.1021/am4000485 Hu, C. et al. Fabrication of reduced graphene oxide and silver nanoparticle hybrids for Raman detection of absorbed folic acid: a potential cancer diagnostic probe. ACS Appl. Mater. Interfaces 5, 4760-4768 (2013). 

  6. Nature J.K. Nicholson 455 1054 2008 10.1038/4551054a Nicholson, J.K. & London, J.C. Systems biology: metabonomics. Nature 455, 1054-1056 (2008). 

  7. Cell A. Qui 127 917 2006 10.1016/j.cell.2006.09.041 Qui, A. et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127, 917-928 (2006). 

  8. Cytokine Growth Factor Rev. C.C. Hong 20 409 2009 10.1016/j.cytogfr.2009.10.021 Hong, C.C. & Yu, P.B. Application of small molecule BMP inhibitors in physiology and disease. Cytokine Growth Factor Rev. 20, 409-418 (2009). 

  9. Lancet A. Dehghan 372 1953 2008 10.1016/S0140-6736(08)61343-4 Dehghan, A. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953-1961 (2008). 

  10. ACS Nano M. Park 11 438 2017 10.1021/acsnano.6b06196 Park, M., Jung, H., Jeong, Y. & Jeong, K.-H. Plasmonic Schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 11, 438-443 (2017). 

  11. Innest. Ophthalmol. Visual Sci. C.K.M. Choy 41 3293 2000 Choy, C.K.M., Benzie, I.F.F. & Cho, P. Ascorbic acid concentration and total antioxidant activity of human tear fluid measured using the FRASC assay. Innest. Ophthalmol. Visual Sci. 41, 3293-3298 (2000). 

  12. Eur J. Neurol. E.-J. Kim 19 488 2012 10.1111/j.1468-1331.2011.03570.x Kim, E.-J. et al. Glucose metabolism in sporadic Creutzfeldt-Jakob disease: an SPM analysis of F-FDG PET. Eur J. Neurol. 19, 488-493 (2012). 

  13. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biomed. J. S. Hestrin 58 345 1954 Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biomed. J. 58, 345-352 (1954). 

  14. J. Ferment. Bioeng. S. Masaoka 75 18 1993 10.1016/0922-338X(93)90171-4 Masaoka, S., Ohe, T. & Sakota, N. Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75, 18-22 (1993). 

  15. Biomicrofluidics J.H. Shin 8 054121 2014 10.1063/1.4899773 Shin, J.H., Park, J., Kim, S.H. & Park, J.-K. Programmed sample delivery on a pressurized paper. Biomicrofluidics 8, 054121 (2014). 

  16. Proc. Natl. Acad. Sci. U. S. A. A.W. Martinez 105 19606 2008 10.1073/pnas.0810903105 Martinez, A.W., Phillips, S.T. & Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. U. S. A. 105, 19606-19611 (2008). 

  17. Lab Chip J. Yu 11 1286 2011 10.1039/c0lc00524j Yu, J., Ge, L., Huang, J., Wang, S. & Ge, S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11, 1286-1291 (2011). 

  18. Anal. Chem. J.H. Shin 88 10374 2016 10.1021/acs.analchem.6b02869 Shin, J.H. & Park, J.-K. Functional packaging of lateral flow strip allows simple delivery of multiple reagents for multistep assays. Anal. Chem. 88, 10374-10378 (2016). 

  19. Anal. Bioanal. Chem. T. Teerinen 406 5955 2014 10.1007/s00216-014-8001-7 Teerinen, T., Lappalainen, T. & Erho, T. A paper-based lateral flow assay for morphine. Anal. Bioanal. Chem. 406, 5955-5965 (2014). 

  20. Biomaterials J. Miao 32 9557 2011 10.1016/j.biomaterials.2011.08.080 Miao, J. et al. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32, 9557-9567 (2011). 

  21. J. Hazard. Mater. J. Yang 189 377 2011 10.1016/j.jhazmat.2011.02.048 Yang, J. et al. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J. Hazard. Mater. 189, 377-384 (2011). 

  22. N. Engl. J. Med. A.J. Wilcox 340 1796 1999 10.1056/NEJM199906103402304 Wilcox, A.J., Baird, D.D. & Weinberg, C.R. Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med. 340, 1796-1799 (1999). 

  23. Adv. Mater. A. Russo 23 3426 2011 10.1002/adma.201101328 Russo, A. et al. Pen-on-paper flexible electronics. Adv. Mater. 23, 3426-3430 (2011). 

  24. Small L. Polavarapu 10 3065 2014 10.1002/smll.201400438 Polavarapu, L., Porta, A.L., Novikov, S.M., Coronado-Puchau, M. & Liz-Marzán, L.M. Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates. Small 10, 3065-3071 (2014). 

  25. Anal. Chem. C.H. Lee 83 8953 2011 10.1021/ac2016882 Lee, C.H., Hankus, M.E., Tian, L., Pellegrino, P.M. & Singamaneni, S. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal. Chem. 83, 8953-8958 (2011). 

  26. Analyst W.W. Yu 138 3679 2013 10.1039/c3an00673e Yu, W.W. and White, I.M. Chromatographic separation and detection of target analytes from complex samples using inkjet-printed SERS substrates. Analyst 138, 3679-3686 (2013). 

  27. Analyst W.W. Yu 138 1020 2013 10.1039/C2AN36116G Yu, W.W. and White, I.M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138, 1020-1025 (2013). 

  28. J. Am. Chem. Soc. H. Liu 133 17564 2011 10.1021/ja2071779 Liu, H. and Crooks, R.M. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 133, 17564-17566 (2011). 

  29. Angew. Chem. Int. Ed. H. Liu 51 6925 2012 10.1002/anie.201202929 Liu, H., Siang, Y., Lu, Y. & Crooks, R.M. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew. Chem. Int. Ed. 51, 6925-6928 (2012). 

  30. Adv. Funct. Mater. R.V. Martinez 22 1376 2012 10.1002/adfm.201102978 Martinez, R.V., Fish, C.R., Chen, X. & Whitesides, G.M. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376-1384 (2012). 

  31. Lab Chip L. Ge 12 3150 2012 10.1039/c2lc40325k Ge, L., Wang, S., Song, X., Ge, S. & Yu, J. 3D origamibased multifunction-integrated immunodevice: lowcost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12, 3150-3158 (2012). 

  32. Analyst W. Dungchai 136 77 2011 10.1039/C0AN00406E Dungchai, W., Chailapakul, O. & Henry, C.S. A lowcost, simple, and rapid fabrication method for paperbased microfluidics using wax screen-printing. Analyst 136, 77-82 (2011). 

  33. Electrophoresis Y. Lu 30 1497 2009 10.1002/elps.200800563 Lu, Y., Shi, W., Jiang, L., Qin, J. & Lin, B. Rapid prototyping of paper-based microfluidics with wax for lowcost, portable bioassay. Electrophoresis 30, 1497-1500 (2009). 

  34. Anal. Chem. E. Carrilho 81 7091 2009 10.1021/ac901071p Carrilho, E., Martinez, A.W., Whitesides, G.M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091-7095 (2009). 

  35. Lab Chip G.G. Lewis 12 2630 2012 10.1039/c2lc40331e Lewis, G.G., DiTucci, M.J., Baker, M.S. & Phillips, S.T. High throughput method for prototyping threedimensional, paper-based microfluidic devices. Lab Chip 12, 2630-2633 (2012). 

  36. Anal. Chem. Y. Lu 82 329 2010 10.1021/ac9020193 Lu, Y., Shi, W., Qin, J. & Lin, B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal. Chem. 82, 329-335 (2010). 

  37. Anal. Chem. A.W. Martinez 80 3699 2008 10.1021/ac800112r Martinez, A.W. et al. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80, 3699-3707 (2008). 

  38. Sens. Actuators B J. Park 246 1049 2017 10.1016/j.snb.2017.02.150 Park, J. & Park, J.-K. Pressed region integrated 3D paper-based microfluidic device that enables vertical flow multistep assays for the detection of C-reactive protein based on programmed reagent loading. Sens. Actuators B 246, 1049-1055 (2017). 

  39. Biomicrofluidics Y. Oh 10 014102 2016 10.1063/1.4939434 Oh, Y., Lee, H., Son, S.Y., Kim, S.J. & Kim, P. Capililarity ion concentration polarization for spontaneous biomolecular preconcentration mechnism. Biomicrofluidics 10, 014102 (2016). 

  40. Biosens. Bioelectron. M. Kong 96 173 2017 10.1016/j.bios.2017.05.010 Kong, M., Shin, J.H., Heu, S., Park, J.-K. & Ryu, S. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens. Bioelectron. 96, 173-177 (2017). 

  41. Biosensors and Bioelectronics N.H.A. Raston 93 21 2017 10.1016/j.bios.2016.11.061 Raston, N.H.A., Nguyen, V.T. & Gu, M.B. A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosensors and Bioelectronics 93, 21-25 (2017). 

  42. Nanoscale J. Hwang 8 11418 2016 10.1039/C5NR07243C Hwang, J., Lee, S., Choo, J. Application of a SERSbased lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enteroxin B. Nanoscale 8, 11418 (2016). 

  43. Micromachines J. Park 7 48 2016 10.3390/mi7030048 Park, J., Shin, J.H. & Park, J.-K. Experimental analysis of porosity and permeability in pressed paper. Micromachines 7, 48 (2016). 

  44. Anal. Chem. J. Park 88 3781 2016 10.1021/acs.analchem.5b04743 Park, J., Shin, J.H. & Park, J.-K. Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Anal. Chem. 88, 3781-3788 (2016). 

  45. Anal. Chem. J.L. Delaney 83 1300 2011 10.1021/ac102392t Delaney, J.L. & Hogan, C.F., Tian, J. & Shen, W. Electrogenerated chemiluminescence detection in paperbased microfluidic sensors. Anal. Chem. 83, 1300-1306 (2011). 

  46. Anal. Bioanal. Chem. L. Ge 31 212 2012 Ge, L., Yu, J., Ge, S. & Yan, M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal. Bioanal. Chem. 31, 212-218 (2012). 

  47. Biosens. Bioelectron. S. Wang 31 212 2012 10.1016/j.bios.2011.10.019 Wang, S. et al. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 31, 212-218 (2012). 

  48. Appl. Environ. Microbiol. J. Fletcher 53 183 1987 10.1128/AEM.53.1.183-184.1987 Fletcher, J. Filter-paper dot-immunobinding assay for detection of spiroplasma-citri. Appl. Environ. Microbiol. 53, 183-184 (1987). 

  49. J. Clin. Microbiol. R.L. Heberling 23 109 1986 10.1128/JCM.23.1.109-113.1986 Heberling, R.L. & Kalter, S.S. Rapid dot-immunobinding assay on nitrocellulose for viral antibodies. J. Clin. Microbiol. 23, 109-113 (1986). 

  50. J. Mater. Chem. B H.-J. Yoon 3 2935 2015 10.1039/C4TB01759E Yoon, H.-J., Lee, E.-S., Kang, M., Jeong, Y. & Park, J.-H. In vivo multi-photon luminescence imaging of cerebral vasculature and blood-brain barrier integrity using gold nanoparticles. J. Mater. Chem. B 3, 2935-2938 (2015). 

  51. Annu. Rev. Anal. Chem. P.L. Stiles 1 601 2008 10.1146/annurev.anchem.1.031207.112814 Stiles, P.L., Dieringer, J.A., Shah, N.C. & Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601-626 (2008). 

  52. Adv. Opt. Mater. T.-W. Chang 3 1397 2015 10.1002/adom.201500092 Chang, T.-W. et al. Bifunctional nano lycurgus cup array plasmonic sensor for colorimetric sensing and surface-enhanced Raman spectroscopy. Adv. Opt. Mater. 3, 1397-1404 (2015). 

  53. Opt. Exp. T.J. Seok 21 16561 2013 10.1364/OE.21.016561 Seok, T.J., Jamshidi, A., Eggleston, M. & Wu, M.C. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap. Opt. Exp. 21, 16561-16569 (2013). 

  54. Langmuir H. Chen 24 5233 2008 10.1021/la800305j Chen, H., Kou, X., Yang, Z., Ni, W. & Wang, J. Shapeand size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24, 5233-5237 (2008). 

  55. ACS Nano D.Y. Lei 4 432 2010 10.1021/nn901310k Lei, D.Y. et al. Geometry dependence of surface plasmon polarition lifetimes in nanohole arrays. ACS Nano 4, 432-438 (2010). 

  56. J. Phys. Chem. B T.R. Jensen 103 9846 1999 10.1021/jp9926802 Jensen, T.R. et al. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103, 9846-9853 (1999). 

  57. Nano Lett. J. Zhang 8 1179 2009 10.1021/nl080093z Zhang, J. et al. Single-cell fluorescence imaging using metal plasmon-coupled probe 2: single-molecule counting on lifetime image. Nano Lett. 8, 1179-1186 (2009). 

  58. ACS Nano K. Sugawa 7 9997 2013 10.1021/nn403925d Sugawa, K. et al. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. ACS Nano 7, 9997-10010 (2013). 

  59. Light: Sci. Appl. S.G. Hong 4 e267 2015 10.1038/lsa.2015.40 Hong, S.G., Lee, M.Y., Jackson, A.O. & Lee, L.P. Bioinspired optical antennas: gold plant viruses. Light: Sci. Appl. 4, e267 (2015). 

  60. Small M. Park 11 2487 2015 10.1002/smll.201402942 Park, M., Oh, Y.-J., Park, S.-G., Yang, S.-B. & Jeong, K.-H. Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface-enhanced Raman scattering. Small 11, 2487-2492 (2015). 

  61. J. Colloid Interface Sci. D. Wu 265 234 2003 10.1016/S0021-9797(03)00348-5 Wu, D. & Fang, Y. The adsorption behavior of p-hydroxybenzoic acid on a silver-coated filter paper by surface enhanced Raman scattering. J. Colloid Interface Sci. 265, 234-238 (2003). 

  62. J. Colloid Interface Sci. Z. Luo 283 459 2005 10.1016/j.jcis.2004.09.001 Luo, Z. and Fang, Y. SERS of C60/C70 on gold-coated filter paper on filter film influenced by the gold thickness. J. Colloid Interface Sci. 283, 459-463 (2005). 

  63. Colloid Surf., A L. Zhang 468 309 2015 10.1016/j.colsurfa.2014.12.056 Zhang, L. et al. Cellulose nanofibre textured SERS substrate. Colloid Surf., A 468, 309-314 (2015). 

  64. Colloid Surf., A Y.H. Ngo 420 46 2013 10.1016/j.colsurfa.2012.12.018 Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Effect of cationic polyacrylamide dissolution on the absorption state of gold nanoparticles on paper and their surface enhanced Raman scattering properties. Colloid Surf., A 420, 46-52 (2013). 

  65. J. Colloid Interface Sci. Y.H. Ngo 392 237 2013 10.1016/j.jcis.2012.09.080 Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J. Colloid Interface Sci. 392, 237-246 (2013). 

  66. J. Colloid Interface Sci. Y.H. Ngo 409 59 2013 10.1016/j.jcis.2013.07.051 Ngo, Y.H., Then, W.L., Shen, W. & Garnier, G. Gold nanoparticles paper as a SERS bio-diagnostic platform. J. Colloid Interface Sci. 409, 59-65 (2013). 

  67. AIChE J. D.R. Ballerini 60 1598 2014 10.1002/aic.14398 Ballerini, D.R. et al. Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AIChE J. 60, 1598-1605 (2014). 

  68. Anal. Chem. L. Tian 84 9928 2012 10.1021/ac302332g Tian, L. et al. Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Anal. Chem. 84, 9928-9934 (2012). 

  69. Anal. Chem. A. Abbas 85 3977 2013 10.1021/ac303567g Abbas, A. et al. Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal. Chem. 85, 3977-3983 (2013). 

  70. Sci. Rep. S. Tadepalli 5 16206 2015 10.1038/srep16206 Tadepalli, S. et al. Peptide-functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmoic paper devices. Sci. Rep. 5, 16206 (2015). 

  71. RSC Adv. A.L. Schmucker 6 4136 2016 10.1039/C5RA21977A Schmucker, A.L. et al. Plasmonic paper: a porous and flexible substrate enabling nanoparticle-based combinatorial chemistry. RSC Adv. 6, 4136-4144 (2016). 

  72. J. Phys. Chem. C M.B. Ross 120 20789 2016 10.1021/acs.jpcc.6b02019 Ross, M.B. et al. Structure-function relationships for surface-enhanced Raman spectroscopy-active plasmonic paper. J. Phys. Chem. C 120, 20789-20797 (2016). 

  73. Sens. Actuators B C. Wang 231 357 2016 10.1016/j.snb.2016.03.030 Wang, C., Liu, B. & Dou, X. Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sens. Actuators B 231, 357-364 (2016). 

  74. Anal. Chim. Acta M.-L. Cheng 708 89 2011 10.1016/j.aca.2011.10.013 Cheng, M.-L., Tsai, B.-C. & Yang, J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal. Chim. Acta 708, 89-96 (2011). 

  75. J. Raman Spectrosc. P. Rajapandiyan 45 574 2014 10.1002/jrs.4502 Rajapandiyan, P. & Yang, J. Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. J. Raman Spectrosc. 45, 574-580 (2014). 

  76. Talanta Y. Li 147 493 2016 10.1016/j.talanta.2015.10.025 Li, Y. et al. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147, 493-500 (2016). 

  77. Talanta K. Zhang 162 52 2017 10.1016/j.talanta.2016.10.020 Zhang, K., Qing, J., Gao, H., Ji, J. & Liu, B. Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis. Talanta 162, 52-56 (2017). 

  78. Anal. Chem. W.W. Yu 82 9626 2010 10.1021/ac102475k Yu, W.W. & White, I.M. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal. Chem. 82, 9626-9630 (2010). 

  79. Anal. Chim. Acta A.G. Berger 949 59 2017 10.1016/j.aca.2016.10.035 Berger, A.G., Restaino, S.M. & White, I.M. Verticalflow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal. Chim. Acta 949, 59-66 (2017). 

  80. Anal. Methods W. Zhang 6 2066 2014 10.1039/C4AY00046C Zhang, W. et al. Brushing, a simple way to fabricate SERS active paper substrates. Anal. Methods 6, 2066-2071 (2014). 

  81. ACS Appl. Mater. Interfaces K. Zhang 7 16767 2015 10.1021/acsami.5b04534 Zhang, K. et al. Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl. Mater. Interfaces 7, 16767-16774 (2015). 

  82. Light: Sci. Appl. H. Jung 5 e16009 2016 10.1038/lsa.2016.9 Jung, H., Park, M., Kang, M. & Jeong, K.-H. Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules. Light: Sci. Appl. 5, e16009 (2016). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로