$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development of Printable Natural Cartilage Matrix Bioink for 3D Printing of Irregular Tissue Shape 원문보기

Tissue engineering and regenerative medicine, v.15 no.2, 2018년, pp.155 - 162  

Jung, Chi Sung ,  Kim, Byeong Kook ,  Lee, Junhee ,  Min, Byoung-Hyun ,  Park, Sang-Hyug

Abstract AI-Helper 아이콘AI-Helper

The extracellular matrix (ECM) is known to provide instructive cues for cell attachment, proliferation, differentiation, and ultimately tissue regeneration. The use of decellularized ECM scaffolds for regenerative-medicine approaches is rapidly expanding. In this study, cartilage acellular matrix (C...

참고문헌 (26)

  1. Eur Spine J BP Chan 17 467 2008 10.1007/s00586-008-0745-3 Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17:467-79. 

  2. Biomaterials F Bolland 28 1061 2007 10.1016/j.biomaterials.2006.10.005 Bolland F, Korossis S, Wilshaw SP, Ingham E, Fisher J, Kearney JN, et al. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials. 2007;28:1061-70. 

  3. Curr Opin Solid State Mater Sci G Agmon 20 193 2016 10.1016/j.cossms.2016.02.001 Agmon G, Christman KL. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci. 2016;20:193-201. 

  4. Mater Today (Kidlington) RJ Wade 15 454 2012 10.1016/S1369-7021(12)70197-9 Wade RJ, Burdick JA. Engineering ECM signals into biomaterials. Mater Today (Kidlington). 2012;15:454-9. 

  5. Front Bioeng Biotechnol ME Scarritt 3 43 2015 Scarritt ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol. 2015;3:43. 

  6. Trends Biotechnol KE Benders 31 169 2013 10.1016/j.tibtech.2012.12.004 Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013;31:169-76. 

  7. Biomaterials Q Yang 29 2378 2008 10.1016/j.biomaterials.2008.01.037 Yang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials. 2008;29:2378-87. 

  8. Tissue Eng Regen Med JH Park 13 612 2016 10.1007/s13770-016-8111-8 Park JH, Jang J, Lee JS, Cho DW. Three-dimensional printing in tissue engineering and regenerative medicine. Tissue Eng Regen Med. 2016;13:612-21. 

  9. Tissue Eng Regen Med SH Ahn 13 663 2016 10.1007/s13770-016-0148-1 Ahn SH, Lee J, Park SA, Kim WD. Three-dimensional bio-printing equipment technologies for tissue engineering and regenerative medicine. Tissue Eng Regen Med. 2016;13:663-76. 

  10. Tissue Eng Regen Med SH Park 6 622 2016 10.1007/s13770-016-0145-4 Park SH, Jung CS, Min BH. Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Eng Regen Med. 2016;6:622-35. 

  11. Ann Med SM Peltola 40 268 2008 10.1080/07853890701881788 Peltola SM, Melchels FP, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40:268-80. 

  12. Tissue Eng Regen Med S Shivalkar 14 187 2017 10.1007/s13770-016-0002-5 Shivalkar S, Singh S. Solid freeform techniques application in bone tissue engineering for scaffold fabrication. Tissue Eng Regen Med. 2017;14:187-200. 

  13. Tissue Eng Regen Med JH Kim 6 647 2016 10.1007/s13770-016-0133-8 Kim JH, Yoo JJ, Lee SJ. Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Eng Regen Med. 2016;6:647-62. 

  14. Acta Biomater JM Sobral 7 1009 2011 10.1016/j.actbio.2010.11.003 Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 2011;7:1009-18. 

  15. Nat Commun F Pati 5 3935 2014 10.1038/ncomms4935 Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. 

  16. Nat Biotechnol SV Murphy 32 773 2014 10.1038/nbt.2958 Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773-85. 

  17. Gland Surg EJ Combellack 5 227 2016 Combellack EJ, Jessop ZM, Naderi N, Griffin M, Dobbs T, Ibrahim A, et al. Adipose regeneration and implications for breast reconstruction: update and the future. Gland Surg. 2016;5:227-41. 

  18. Nature HJ Jin 424 1057 2003 10.1038/nature01809 Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature. 2003;424:1057-61. 

  19. Tissue Eng Regen Med W Liu 13 516 2016 10.1007/s13770-016-9099-9 Liu W, Li Z, Zheng L, Zhang X, Liu P, Yang T, et al. Electrospun fibrous silk fibroin/poly(L-lactic acid) scaffold for cartilage tissue engineering. Tissue Eng Regen Med. 2016;13:516-26. 

  20. Prog Polym Sci B Kundu 39 251 2014 10.1016/j.progpolymsci.2013.09.002 Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, et al. Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci. 2014;39:251-67. 

  21. J Funct Biomater M Floren 7 E26 2016 10.3390/jfb7030026 Floren M, Migliaresi C, Motta A. Processing techniques and applications of silk hydrogels in bioengineering. J Funct Biomater. 2016;7:E26. 

  22. Tissue Eng Part A SH Park 18 447 2012 10.1089/ten.tea.2011.0195 Park SH, Gil ES, Cho H, Mandal BB, Tien LW, Min BH, et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds. Tissue Eng Part A. 2012;18:447-58. 

  23. J Biomater Sci Polym Ed JE Trachtenberg 28 532 2017 10.1080/09205063.2017.1286184 Trachtenberg JE, Placone JK, Smith BT, Fisher JP, Mikos AG. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. J Biomater Sci Polym Ed. 2017;28:532-54. 

  24. J R Soc Interface M Tallawi 12 20150254 2015 10.1098/rsif.2015.0254 Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G, et al. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface. 2015;12:20150254. 

  25. Int J Nanomedicine Y Xia 8 4197 2013 Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, et al. Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine. 2013;8:4197-213. 

  26. ACS Biomater Sci Eng M Guvendiren 2 1679 2016 10.1021/acsbiomaterials.6b00121 Guvendiren M, Molde J, Soares RM, Kohn J. Designing biomaterials for 3D Printing. ACS Biomater Sci Eng. 2016;2:1679-93. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로