$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Functionally Graded Bismuth Oxide/Zirconia Bilayer Electrolytes for High-Performance Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs)

ACS applied materials & interfaces, v.9 no.10, 2017년, pp.8443 - 8449  

Joh, Dong Woo (Department of Energy Systems Engineering, DGIST, Daegu 42988, Korea) ,  Park, Jeong Hwa (Department of Energy Systems Engineering, DGIST, Daegu 42988, Korea) ,  Kim, Doyeub (Department of Energy Systems Engineering, DGIST, Daegu 42988, Korea) ,  Wachsman, Eric D. (University of Maryland Energy Research Center, University of Maryland, College Park, Maryland 20742, United States) ,  Lee, Kang Taek (Department of Energy Systems Engineering, DGIST, Daegu 42988, Korea)

Abstract AI-Helper 아이콘AI-Helper

A functionally graded Bi1.6.Er0.4O3(ESB)/Y0.16Zr0.84O1.92(YSZ) bilayer electrolyte is successfully developed via a cost-effective screen printing process using nanoscale ESB powders on the tape-cast NiO-YSZ anode support. Because of the highly enhanced oxygen incorporation process at the cathode/ele...

참고문헌 (48)

  1. Wachsman, Eric D., Lee, Kang Taek. Lowering the Temperature of Solid Oxide Fuel Cells. Science, vol.334, no.6058, 935-939.

  2. Steele, Brian C. H., Heinzel, Angelika. Materials for fuel-cell technologies. Nature, vol.414, no.6861, 345-352.

  3. Wachsman, Eric D., Marlowe, Craig A., Lee, Kang Taek. Role of solid oxide fuel cells in a balanced energy strategy. Energy & environmental science, vol.5, no.2, 5498-5509.

  4. Tarancón, Albert. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature. Energies, vol.2, no.4, 1130-1150.

  5. Gao, Zhan, Mogni, Liliana V., Miller, Elizabeth C., Railsback, Justin G., Barnett, Scott A.. A perspective on low-temperature solid oxide fuel cells. Energy & environmental science, vol.9, no.5, 1602-1644.

  6. Steele, B.C.H.. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid state ionics, vol.129, no.1, 95-110.

  7. Adler, S. B.. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chemical reviews, vol.104, no.10, 4791-4844.

  8. Will, J, Mitterdorfer, A, Kleinlogel, C, Perednis, D, Gauckler, L.J. Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid state ionics, vol.131, no.1, 79-96.

  9. Kim, Jai‐Woh, Virkar, Anil V., Fung, Kuan‐Zong, Mehta, Karun, Singhal, Subhash C.. Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells. Journal of the Electrochemical Society : JES, vol.146, no.1, 69-78.

  10. Von Dollen, Paul, Barnett, Scott. A Study of Screen Printed Yttria‐Stabilized Zirconia Layers for Solid Oxide Fuel Cells. Journal of the American Ceramic Society, vol.88, no.12, 3361-3368.

  11. Ivers-Tiffée, Ellen, Weber, André, Herbstritt, Dirk. Materials and technologies for SOFC-components. Journal of the European Ceramic Society, vol.21, no.10, 1805-1811.

  12. Deganello, Francesca, Esposito, Vincenzo, Miyayama, Masaru, Traversa, Enrico. Cathode Performance of Nanostructured La[sub 1−a]Sr[sub a]Co[sub 1−b]Fe[sub b]O[sub 3−x] on a Ce[sub 0.8]Sm[sub 0.2]O[sub 2] Electrolyte Prepared by Citrate-Nitrate Autocombustion. Journal of the Electrochemical Society : JES, vol.154, no.2, A89-.

  13. Perry Murray, E, Sever, M.J, Barnett, S.A. Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes. Solid state ionics, vol.148, no.1, 27-34.

  14. Shao, Zongping, Haile, Sossina M.. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, vol.431, no.7005, 170-173.

  15. Oh, Dongjo, Gostovic, Danijel, Wachsman, Eric D.. Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation. Journal of materials research, vol.27, no.15, 1992-1999.

  16. Lee, Wonyoung, Han, Jeong Woo, Chen, Yan, Cai, Zhuhua, Yildiz, Bilge. Cation Size Mismatch and Charge Interactions Drive Dopant Segregation at the Surfaces of Manganite Perovskites. Journal of the American Chemical Society, vol.135, no.21, 7909-7925.

  17. Ni, Na, Cooper, Samuel J., Williams, Robert, Kemen, Nils, McComb, David W., Skinner, Stephen J.. Degradation of (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3−δ Solid Oxide Fuel Cell Cathodes at the Nanometer Scale and below. ACS applied materials & interfaces, vol.8, no.27, 17360-17370.

  18. Wang, Cheng Cheng, O'Donnell, Kane, Jian, Li, Jiang, San Ping. Co-Deposition and Poisoning of Chromium and Sulfur Contaminants on La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society : JES, vol.162, no.6, F507-F512.

  19. Petric, Anthony, Huang, Peng, Tietz, Frank. Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid state ionics, vol.135, no.1, 719-725.

  20. Mai, A., Becker, M., Assenmacher, W., Tietz, F., Hathiramani, D., Ivers-Tiffée, E., Stöver, D., Mader, W.. Time-dependent performance of mixed-conducting SOFC cathodes. Solid state ionics, vol.177, no.19, 1965-1968.

  21. Knibbe, Ruth, Hjelm, Johan, Menon, Mohan, Pryds, Nini, Søgaard, Martin, Wang, Hsiang Jen, Neufeld, Kai. Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC. Journal of the American Ceramic Society, vol.93, no.9, 2877-2883.

  22. Gao, Z., Kennouche, D., Barnett, S.A.. Reduced-temperature firing of solid oxide fuel cells with zirconia/ceria bi-layer electrolytes. Journal of power sources, vol.260, 259-263.

  23. Bentzen, J.J., Schwartzbach, H.. Electrical conductivity, structure, and thermal expansion behaviour of ZrO2-CeO2-Gd2O3-Y2O3 solid solutions. Solid state ionics, vol.40, no.2, 942-946.

  24. Tsoga, A., Gupta, A., Naoumidis, A., Nikolopoulos, P.. Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta materialia, vol.48, no.18, 4709-4714.

  25. Mai, Andreas, Haanappel, Vincent A.C., Tietz, Frank, Stöver, Detlev. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells : Part II. Influence of the CGO interlayer. Solid state ionics, vol.177, no.19, 2103-2107.

  26. Lee, Kang Taek, Yoon, Hee Sung, Wachsman, Eric D.. The evolution of low temperature solid oxide fuel cells. Journal of materials research, vol.27, no.16, 2063-2078.

  27. Jung, Doh Won, Duncan, Keith L., Wachsman, Eric D.. Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x–(WO3)y–(BiO1.5)1−xy. Acta materialia, vol.58, no.2, 355-363.

  28. Steele, B.C.H., Kilner, J.A., Dennis, P.F., McHale, A.E.. Oxygen surface exchange and diffusion in fast ionic conductors. Solid state ionics, vol.18, no.2, 1038-1044.

  29. Takahashi, T., Esaka, T., Iwahara, H.. Conduction in Bi2O3-based oxide ion conductors under low oxygen pressure. I. Current blackening of the Bi2O3-Y2O3 electrolyte. Journal of applied electrochemistry, vol.7, no.4, 299-302.

  30. Ahn, J.S., Pergolesi, D., Camaratta, M.A., Yoon, H., Lee, B.W., Lee, K.T., Jung, D.W., Traversa, E., Wachsman, E.D.. High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells. Electrochemistry communications, vol.11, no.7, 1504-1507.

  31. Wachsman, E. D., Jayaweera, P., Jiang, N., Lowe, D. M., Pound, B. G.. Stable High Conductivity Ceria/Bismuth Oxide Bilayered Electrolytes. Journal of the Electrochemical Society : JES, vol.144, no.1, 233-236.

  32. Lee, K.T., Jung, D.W., Yoon, H.S., Lidie, A.A., Camaratta, M.A., Wachsman, E.D.. Interfacial modification of La0.80Sr0.20MnO3-δ-Er0.4Bi0.6O3 cathodes for high performance lower temperature solid oxide fuel cells. Journal of power sources, vol.220, 324-330.

  33. Lee, K.T., Jung, D.W., Camaratta, M.A., Yoon, H.S., Ahn, J.S., Wachsman, E.D.. Gd0.1Ce0.9O1.95/Er0.4Bi1.6O3 bilayered electrolytes fabricated by a simple colloidal route using nano-sized Er0.4Bi1.6O3 powders for high performance low temperature solid oxide fuel cells. Journal of power sources, vol.205, 122-128.

  34. Lee, Kang Taek, Lidie, Ashley A., Yoon, Hee Sung, Wachsman, Eric D.. Rational Design of Lower‐Temperature Solid Oxide Fuel Cell Cathodes via Nanotailoring of Co‐Assembled Composite Structures. Angewandte Chemie, vol.126, no.49, 13681-13685.

  35. Lee, Kang Taek, Lidie, Ashley A., Jeon, Sang Yun, Hitz, Gregory T., Song, Sun Ju, Wachsman, Eric D.. Highly functional nano-scale stabilized bismuth oxides via reverse strike co-precipitation for solid oxide fuel cells. Journal of materials chemistry. A, Materials for energy and sustainability, vol.1, no.20, 6199-.

  36. Adler, S.B., Chen, X.Y., Wilson, J.R.. Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. Journal of catalysis, vol.245, no.1, 91-109.

  37. Zhang, Xiaomin, Liu, Li, Zhao, Zhe, Tu, Baofeng, Ou, Dingrong, Cui, Daan, Wei, Xuming, Chen, Xiaobo, Cheng, Mojie. Enhanced Oxygen Reduction Activity and Solid Oxide Fuel Cell Performance with a Nanoparticles-Loaded Cathode. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.15, no.3, 1703-1709.

  38. Barfod, Rasmus, Mogensen, Mogens, Klemenso̸, Trine, Hagen, Anke, Liu, Yi-Lin, Vang Hendriksen, Peter. Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy. Journal of the Electrochemical Society : JES, vol.154, no.4, B371-.

  39. Handbook of Solid State Electrochemistry Gellings P. J. 1997 

  40. Fuel Cell Fundamentals O’hayre R. 2016 10.1002/9781119191766 

  41. Fan, Zeng, Prinz, Fritz B.. Enhancing Oxide Ion Incorporation Kinetics by Nanoscale Yttria-Doped Ceria Interlayers. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.11, no.6, 2202-2205.

  42. Choi, M.B., Singh, B., Wachsman, E.D., Song, S.J.. Performance of La0.1Sr0.9Co0.8Fe0.2O3-δ and La0.1Sr0.9Co0.8Fe0.2O3-δ-Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells. Journal of power sources, vol.239, 361-373.

  43. Lu, Z., Zhou, X.d., Fisher, D., Templeton, J., Stevenson, J., Wu, N., Ignatiev, A.. Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0.2Ce0.8O1.9 interlayer. Electrochemistry communications, vol.12, no.2, 179-182.

  44. Milcarek, Ryan J., Wang, Kang, Garrett, Michael J., Ahn, Jeongmin. Performance Investigation of Dual Layer Yttria-Stabilized Zirconia-Samaria-Doped Ceria Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells. Journal of electrochemical energy conversion and storage, vol.13, no.1, 011002-.

  45. Jiang, Z., Zhang, L., Cai, L., Xia, C.. Bismuth oxide-coated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells with yttria-stabilized zirconia electrolytes. Electrochimica acta, vol.54, no.11, 3059-3065.

  46. Cronin, J.S., Chen-Wiegart, Y.c.K., Wang, J., Barnett, S.A.. Three-dimensional reconstruction and analysis of an entire solid oxide fuel cell by full-field transmission X-ray microscopy. Journal of power sources, vol.233, 174-179.

  47. Li, Junliang, wang, Shaorong, Wang, Zhenrong, Qian, Jiqin, Liu, Renzhu, Wen, Tinglian, Wen, Zhaoyin. Effect of the cathode structure on the electrochemical performance of anode-supported solid oxide fuel cells. Journal of solid state electrochemistry : current research and development in science and technology, vol.14, no.4, 579-583.

  48. Taek Lee, Kang, Yoon, Hee Sung, Ahn, Jin Soo, Wachsman, Eric D.. Bimodally integrated anode functional layer for lower temperature solid oxide fuel cells. Journal of materials chemistry, vol.22, no.33, 17113-17120.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로