$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review

Applied thermal engineering, v.142, 2018년, pp.10 - 29  

Deng, Yuanwang (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ,  Feng, Changling (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ,  E, Jiaqiang (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ,  Zhu, Hao (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ,  Chen, Jingwei (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ,  Wen, Ming (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ,  Yin, Huichun (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University)

Abstract AI-Helper 아이콘AI-Helper

Abstract As the power lithium-ion batteries are applied to provide energy for electric vehicles, higher requirements for battery thermal management system (BTMS) have been put forward. The operating temperature, reliability, safety and cycle life of batteries is the key points that people concern. ...

주제어

참고문헌 (149)

  1. Appl. Therm. Eng. E 130 754 2018 10.1016/j.applthermaleng.2017.11.070 Effect analysis on flow and boiling heat transfer performance of cooling water-jacket of bearing in the gasoline engine turbocharger 

  2. Appl. Energy Deng 210 279 2018 10.1016/j.apenergy.2017.10.093 Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model 

  3. Appl. Therm. Eng. E 100 356 2016 10.1016/j.applthermaleng.2016.02.031 Effect analysis on pressure drop of the continuous regeneration-diesel particulate filter based on NO2 assisted regeneration 

  4. Appl. Energy Zhang 181 14 2016 10.1016/j.apenergy.2016.08.051 Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process 

  5. Appl. Therm. Eng. Zhang 121 838 2017 10.1016/j.applthermaleng.2017.04.155 Influence of structural and operating factors on performance degradation of the diesel particulate filter based on composite regeneration 

  6. Appl. Therm. Eng. Deng 123 61 2017 10.1016/j.applthermaleng.2017.05.071 Influence of geometric characteristics of a diesel particulate filter on its behavior in equilibrium state 

  7. Appl. Energy E 181 322 2016 10.1016/j.apenergy.2016.08.090 A skeletal mechanism modeling on soot emission characteristics for biodiesel surrogates with varying fatty acid methyl esters proportion 

  8. Renew. Sustain. Energy Rev. E 80 620 2017 10.1016/j.rser.2017.05.250 Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: a review 

  9. Energy Convers. Manage. E 117 410 2016 10.1016/j.enconman.2016.03.021 Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled diesel engine 

  10. Appl. Energy Liu 162 278 2016 10.1016/j.apenergy.2015.10.090 Development of a skeletal mechanism for biodiesel blend surrogates with varying fatty acid methyl esters proportion 

  11. Energy Convers. Manage. Liu 150 304 2017 10.1016/j.enconman.2017.08.016 Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review 

  12. J. Environ. Sci. Wada 21 745 2009 10.1016/S1001-0742(08)62335-9 Research and development of electric vehicles for clean transportation 

  13. Saw 2015 Thermal Management of Lithium-ion Battery Pack with Liquid Cooling 

  14. Appl. Therm. Eng. Yan 106 131 2016 10.1016/j.applthermaleng.2016.05.187 Numerical study on the thermal performance of a composite board in battery thermal management system 

  15. J. Power Sour. Wang 208 210 2012 10.1016/j.jpowsour.2012.02.038 Thermal runaway caused fire and explosion of lithium ion battery 

  16. Process Saf. Environ. Prot. Lisbona 89 434 2011 10.1016/j.psep.2011.06.022 A review of hazards associated with primary lithium and lithium-ion batteries 

  17. Appl. Therm. Eng. Xu 110 883 2017 10.1016/j.applthermaleng.2016.08.151 Prevent thermal runaway of lithium-ion batteries with mini-channel cooling 

  18. J. Power Sour. Shah 330 167 2016 10.1016/j.jpowsour.2016.08.133 Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells 

  19. J. Power Sour. Von Luders 342 17 2017 10.1016/j.jpowsour.2016.12.032 Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction 

  20. J. Power Sour. Zinth 271 152 2014 10.1016/j.jpowsour.2014.07.168 Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction 

  21. Int. J. Educ. Manage. Lyu 1 4 5 2016 Research and suggestions on safety of electric vehicles 

  22. Int. J. Automot. Technol. Lee 15 7 1101 2014 10.1007/s12239-014-0114-7 Development of BLDC motor and multi-blade fan for HEV battery cooling system 

  23. Appl. Energy Ling 148 403 2015 10.1016/j.apenergy.2015.03.080 A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling 

  24. Int. J. Automot. Technol. Cho 15 5 795 2014 10.1007/s12239-014-0083-x Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles 

  25. J. Power Sour. Xu 240 33 2013 10.1016/j.jpowsour.2013.03.004 Research on the heat dissipation performance of battery pack based on forced air cooling 

  26. Chen vol. 2 161 2014 Fluid and thermal analysis of power Li-ion battery pack and experimental verification 

  27. Exp. Therm. Fluid Sci. Zhao 82 182 2017 10.1016/j.expthermflusci.2016.11.017 Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack 

  28. J. Energy Inst. Rao 88 241 2015 10.1016/j.joei.2014.09.006 Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam 

  29. Int. J. Heat Mass Transf. Alipanah 102 1159 2016 10.1016/j.ijheatmasstransfer.2016.07.010 Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams 

  30. Energy Hussain 115 209 2016 10.1016/j.energy.2016.09.008 Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite 

  31. J. Storage Mater. Karimi 8 168 2016 Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites 

  32. J. Power Sour. Worwood 346 151 2017 10.1016/j.jpowsour.2017.02.023 A new approach to the internal thermal management of cylindrical battery cells for automotive applications 

  33. Appl. Therm. Eng. Putra 99 784 2016 10.1016/j.applthermaleng.2016.01.123 Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application 

  34. J. Power Sour. Liu 321 57 2016 10.1016/j.jpowsour.2016.04.108 Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling 

  35. Renew. Sustain. Energy Rev. Wang 64 106 2016 10.1016/j.rser.2016.05.033 A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles 

  36. Energy Convers. Manage. Wu 138 486 2017 10.1016/j.enconman.2017.02.022 Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system 

  37. J. Power Sour. Vertiz 272 476 2014 10.1016/j.jpowsour.2014.08.092 Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model 

  38. Appl. Energy Ping 205 1327 2017 10.1016/j.apenergy.2017.08.073 Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions 

  39. Appl. Energy Wei 135 1 2014 10.1016/j.apenergy.2014.08.062 Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies 

  40. Electrochim. Acta Bahiraei 254 59 2017 10.1016/j.electacta.2017.09.084 Electrochemical-thermal modeling to evaluate active thermal management of a Lithium-ion battery module 

  41. Int. J. Hydrogen Energy Lai 40 13039 2015 10.1016/j.ijhydene.2015.07.079 Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates 

  42. J. Power Sour. Ren 364 328 2017 10.1016/j.jpowsour.2017.08.035 An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery 

  43. Energy Feng 115 194 2016 10.1016/j.energy.2016.08.094 A 3D thermal runaway propagation model for a large format lithium ion battery module 

  44. IFAC Proc. Vol. Schmidt 43 7 198 2011 10.3182/20100712-3-DE-2013.00010 Lumped parameter modeling of electrochemical and thermal dynamics in lithium-ion batteries 

  45. J. Power Sour. Lin 257 1 2014 10.1016/j.jpowsour.2014.01.097 A lumped-parameter electro-thermal model for cylindrical batteries 

  46. J. Power Sour. Lee 220 430 2012 10.1016/j.jpowsour.2012.07.075 One-dimensional physics-based reduced-order model of lithium-ion dynamics 

  47. Electrochim. Acta Samba 117 246 2017 10.1016/j.electacta.2013.11.113 Development of an advanced two-dimensional thermal model for large size lithium-ion pouch cells 

  48. Energies Yi 7 7586 2014 10.3390/en7117586 Three-dimensional modeling of the thermal behavior of a lithium-ion battery module for hybrid electric vehicle applications 

  49. J. Power Sour. Sun 206 349 2012 10.1016/j.jpowsour.2012.01.081 Three-dimensional thermal modeling of a lithium-ion battery pack 

  50. IEEE Trans. Energy Convers. Murashko 28 2 335 2013 10.1109/TEC.2013.2255291 Three-dimensional thermal model of a lithium ion battery for hybrid mobile working machines: determination of the model parameters in a pouch cell 

  51. J. Electrochem. Soc. Bernardi 132 5 1985 10.1149/1.2113792 A general energy balance for battery systems 

  52. Energy Convers. Manage. Esmaeili 139 194 2017 10.1016/j.enconman.2017.02.052 Developing heat source term including heat generation at rest condition for Lithium-ion battery pack by up scaling information from cell scale 

  53. Electrochim. Acta Heubner 186 404 2015 10.1016/j.electacta.2015.10.182 Local heat generation in a single stack lithium ion battery cell 

  54. Appl. Therm. Eng. Nazari 125 1501 2017 10.1016/j.applthermaleng.2017.07.126 Heat generation in lithium-ion batteries with different nominal capacities and chemistries 

  55. J. Power Sour. Bandhauer 247 618 2014 10.1016/j.jpowsour.2013.08.015 Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery 

  56. Appl. Energy De Vita 206 101 2017 10.1016/j.apenergy.2017.08.184 Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications 

  57. J. Power Sour. Jalkanen 243 354 2013 10.1016/j.jpowsour.2013.05.199 Entropy change effects on the thermal behavior of a LiFePO4/graphite lithium-ion cell at different states of charge 

  58. J. Power Sour. Damay 332 149 2016 10.1016/j.jpowsour.2016.09.083 A method for the fast estimation of a battery entropy-variation high-resolution curve-application on a commercial LiFePO4/graphite cell 

  59. J. Power Sour. Murashko 330 61 2016 10.1016/j.jpowsour.2016.08.130 Determination of the entropy change profile of a cylindrical lithium-ion battery by heat flux measurements 

  60. Electrochim. Acta Schmidt 137 311 2014 10.1016/j.electacta.2014.05.153 A novel and precise measuring method for the entropy of lithium-ion cells: ΔS via electrothermal impedance spectroscopy 

  61. Appl. Therm. Eng. Malika 129 472 2018 10.1016/j.applthermaleng.2017.10.029 Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling 

  62. Resour. Conserv. Recycl. Dewulf 54 229 2010 10.1016/j.resconrec.2009.08.004 Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings 

  63. World Electr. Veh. Assoc. J. Kim 1 126 2007 10.3390/wevj1010126 Battery thermal management design modeling 

  64. Int. J. Energy Res. Karimi 37 13 2013 10.1002/er.1956 Thermal management of lithium-ion batteries for electric vehicles 

  65. Energy Convers. Manage. van Gils 79 9 2014 10.1016/j.enconman.2013.12.006 Battery thermal management by boiling heat-transfer 

  66. J. Mater. Sci. Technol. Wang 33 1009 2017 10.1016/j.jmst.2017.01.016 Enhanced mechanical properties of friction stir welded 5083Al-H19 Joints with additional water cooling 

  67. Int. J. Therm. Sci. Bayomy 109 182 2016 10.1016/j.ijthermalsci.2016.06.007 Electronic cooling using water flow in aluminum metal foam heat sink: Experimental and numerical approach 

  68. Int. J. Refrig. Chen 82 174 2017 10.1016/j.ijrefrig.2017.06.018 Investigation of an ammonia-water combined power and cooling system driven by the jacket water and exhaust gas heat of an internal combustion engine 

  69. Energy Choi 107 532 2016 10.1016/j.energy.2016.03.116 Thermodynamic analysis of a transcritical CO2 heat recovery system with 2-stage reheat applied to cooling water of internal combustion engine for propulsion of the 6800 TEU container ship 

  70. Int. J. Therm. Sci. Tong 94 259 2015 10.1016/j.ijthermalsci.2015.03.005 Numerical investigation of water cooling for a lithium-ion bipolar battery pack 

  71. Int. J. Heat Mass Transf. Panchal 101 1093 2016 10.1016/j.ijheatmasstransfer.2016.05.126 Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery 

  72. Appl. Therm. Eng. Lan 101 284 2016 10.1016/j.applthermaleng.2016.02.070 Thermal management for high power lithium-ion battery by minichannel aluminum tubes 

  73. Energy Educ. Sci. Technol. Part: A Energy Sci. Res. Rao 30 103 2012 Energy saving of power battery by liquid single-phase convective heat transfer 

  74. Int J Energy Res. Wang 1 2017 Experimental examination of large capacity LiFePO4 battery pack at high temperature and rapid discharge using novel liquid cooling strategy 

  75. Appl. Therm. Eng. Panchal 96 190 2016 10.1016/j.applthermaleng.2015.11.019 Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions 

  76. J. Power Sour. Chen 247 961 2014 10.1016/j.jpowsour.2013.09.060 Accurate determination of battery discharge characteristics-A comparison between two battery temperature control methods 

  77. J. Power Sour. Smith 267 784 2014 10.1016/j.jpowsour.2014.06.001 Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules 

  78. Battery Man Pesaran 43 5 34 2001 Battery thermal management in EVs and HEVs: issues and solutions 

  79. Appl. Therm. Eng. Chen 94 846 2016 10.1016/j.applthermaleng.2015.10.015 Comparison of different cooling methods for lithium ion battery cells 

  80. J. Power Sour. Nelson 110 349 2002 10.1016/S0378-7753(02)00197-0 Modeling thermal management of lithium-ion PNGV batteries 

  81. Int. J. Energy Res. Karimi 38 1793 2014 10.1002/er.3173 Thermal analysis of high-power lithium-ion battery packs using flow network approach 

  82. ASME Publ. Fed Choi 231 1 99 1995 Enhancing thermal conductivity of fluids with nanoparticles 

  83. Int. J. Heat Mass Transf. Liu 49 3028 2006 10.1016/j.ijheatmasstransfer.2006.02.012 Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method 

  84. Int. Commun. Heat Mass Transf. Zakaria 61 61 2015 10.1016/j.icheatmasstransfer.2014.12.015 Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water-ethylene glycol mixture for proton exchange membrane fuel cell application 

  85. J. Nanofl. Angayarkanni 3 17 2014 10.1166/jon.2014.1083 Effect of nanoparticles aggregation on thermal and electrical conductivities of nanofluids 

  86. J. Mol. Liq. Das 240 420 2017 10.1016/j.molliq.2017.05.071 A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids 

  87. Appl. Therm. Eng. Teng 30 2213 2010 10.1016/j.applthermaleng.2010.05.036 The effect of alumina/water nanofluid particle size on thermal conductivity 

  88. Int. J. Heat Mass Transf. He 50 2272 2007 10.1016/j.ijheatmasstransfer.2006.10.024 Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe 

  89. Appl. Therm. Eng. Wu 101 402 2016 10.1016/j.applthermaleng.2016.01.114 Effectiveness of nanofluid on improving the performance of microchannel heat sink 

  90. Int. J. Therm. Sci. Yue 89 305 2015 10.1016/j.ijthermalsci.2014.11.016 Analysis of performances of a manifold microchannel heat sink with nanofluids 

  91. Energy Convers. Manage. Turkyilmazoglu 114 1 2016 10.1016/j.enconman.2016.02.003 Performance of direct absorption solar collector with nanofluid mixture 

  92. Renew. Energy Gorji 106 274 2017 10.1016/j.renene.2017.01.031 Thermal and exergy optimization of a nanofluid-based direct absorption solar collector 

  93. Exp. Therm. Fluid Sci. Huang 72 190 2016 10.1016/j.expthermflusci.2015.11.009 Effects of hybrid nanofluid mixture in plate heat exchangers 

  94. Int. J. Therm. Sci. Sefidan 117 44 2017 10.1016/j.ijthermalsci.2017.03.006 Nanofluid-based cooling of cylindrical lithium-ion battery packs employing forced airflow 

  95. Appl. Nanosci. Tran 7 25 2017 10.1007/s13204-016-0539-6 Li-ion battery cooling system integrates in nano-fluid environment 

  96. Appl. Therm. Eng. Wu 115 659 2017 10.1016/j.applthermaleng.2016.12.139 The lattice Boltzmann investigation of natural convection for nanofluid based battery thermal management 

  97. Int. J. Heat Mass Transf. Huo 91 374 2015 10.1016/j.ijheatmasstransfer.2015.07.128 The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method 

  98. Int. J. Heat Mass Transf. Mondal 112 779 2017 10.1016/j.ijheatmasstransfer.2017.04.130 Exploring the efficacy of nanofluids for lithium-ion battery thermal management 

  99. J. Therm. Sci. Lubarsky 22 5 484 1954 Review of experimental investigations of liquid metal heat transfer 

  100. Energy Convers. Manage. Yang 117 577 2016 10.1016/j.enconman.2016.03.054 Thermal management of Li-ion battery with liquid metal 

  101. Int. Commun. Heat Mass Transf. Deng 37 788 2010 10.1016/j.icheatmasstransfer.2010.04.011 A liquid metal cooling system for the thermal management of high power LEDs 

  102. J. Mech. Des. Hartl 138 3 031402 2016 10.1115/1.4032268 Parameterized design optimization of a magnetohydrodynamic liquid metal active cooling concept 

  103. ACS Appl. Mater. Interf. Zhu 8 2173 2016 10.1021/acsami.5b10769 An integrated liquid cooling system based on galinstan liquid metal droplets 

  104. Sci. China Tech. Sci. Tan 59 2 301 2016 10.1007/s11431-015-5943-8 Electrically driven chip cooling device using hybrid coolants of liquid metal and aqueous solution 

  105. J. Electron. Packag. Li 133 4 041009 2011 10.1115/1.4005297 Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal 

  106. Int. J. Therm. Sci. Liu 120 203 2017 10.1016/j.ijthermalsci.2017.06.008 Heat transfer performance of T-Y type micro-channel heat sink with liquid GaInSn coolant 

  107. Appl. Therm. Eng. Xiang 127 1143 2017 10.1016/j.applthermaleng.2017.08.127 Cooling performance optimization of liquid alloys GaIny in microchannel heat sinks based on back-propagation artificial neural network 

  108. Barnes 719 2008 ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences Immersion cooling of power electronics in segregated hydrofluoroether liquids 

  109. IEEE Trans. Power Electron. Barnes 25 9 2478 2010 10.1109/TPEL.2010.2049864 Practical considerations relating to immersion cooling of power electronics in traction systems 

  110. Appl. Therm. Eng. Pulvirenti 30 2138 2010 10.1016/j.applthermaleng.2010.05.026 Boiling heat transfer in narrow channels with offset stripfins: application to electronic chipsets cooling 

  111. Sens. Actuat. A: Phys. Silverio 235 14 2015 10.1016/j.sna.2015.09.023 Design, fabrication and test of an integrated multi-microchannel heat sink for electronics cooling 

  112. Hirano 1 2014 Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo Boiling liquid battery cooling for electric vehicle 

  113. Appl. Therm. Eng. An 117 534 2017 10.1016/j.applthermaleng.2017.02.053 Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel 

  114. J. Power Sour. Zhao 255 29 2014 10.1016/j.jpowsour.2013.12.138 An experimental study of lithium ion battery thermal management using flexible hydrogel films 

  115. Energy Zhang 68 854 2014 10.1016/j.energy.2014.03.012 Investigation on a hydrogel based passive thermal management system for lithium ion batteries 

  116. Appl. Therm. Eng. Bandhauer 61 756 2013 10.1016/j.applthermaleng.2013.08.004 Passive, internal thermal management system for batteries using microscale liquid-vapor phase change 

  117. J. Power Sour. Mohammadian 293 458 2015 10.1016/j.jpowsour.2015.05.055 Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes 

  118. 10.1007/978-3-662-48768-6_96 Y. Yang, P. Wang, G. Lu, H. Dong, F. Li, Y. Suo, The analysis of battery cooling modes of EV, in: Proceedings of the 5th International Conference on Electrical Engineering and Automatic Control, vol. 367, 2016, pp. 865-875. 

  119. J. Power Sour. Xia 367 90 2017 10.1016/j.jpowsour.2017.09.046 A review on battery thermal management in electric vehicle application 

  120. Int. J. Heat. Mass Tran Wang 103 154 2016 10.1016/j.ijheatmasstransfer.2016.07.041 Experimental and modeling study of controller-based thermal management of battery modules under dynamic loads 

  121. Appl. Energy Wang 134 229 2014 10.1016/j.apenergy.2014.08.013 Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air cooling strategies 

  122. Int. J. Heat. Mass Transf. He 91 630 2015 10.1016/j.ijheatmasstransfer.2015.07.069 Experimental demonstration of active thermal control of a battery module consisting of multiple Li-ion cells 

  123. Int. J. Mech. Eng. Mech. Karimi 1 1 88 2012 Thermal management analysis of a lithium-ion battery pack using flow network approach 

  124. J. Power Sour. Sun 272 404 2014 10.1016/j.jpowsour.2014.08.107 Development of cooling strategy for an air cooled lithium ion battery pack 

  125. Appl. Energy Cicconi 192 159 2017 10.1016/j.apenergy.2017.02.008 Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV 

  126. Appl. Therm. Eng. Yang 80 55 2015 10.1016/j.applthermaleng.2015.01.049 Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: a comparative analysis between aligned and staggered cell arrangements 

  127. J. Power Sour. Mahamud 196 5685 2011 10.1016/j.jpowsour.2011.02.076 Reciprocating airflow for Li-ion battery thermal management to improve temperature uniformity 

  128. Int. J. Heat Mass Transf. Wang 115 296 2017 10.1016/j.ijheatmasstransfer.2017.07.060 Thermal management of a large prismatic battery pack based on reciprocating flow and active control 

  129. J. Power Sour. Jarrett 196 10359 2011 10.1016/j.jpowsour.2011.06.090 Design optimization of electric vehicle battery cooling plates for thermal performance 

  130. J. Power Sour. Jarrett 245 644 2014 10.1016/j.jpowsour.2013.06.114 Influence of operating conditions on the optimum design of electric vehicle battery cooling plates 

  131. J. Power Sour. Wei 260 89 2014 10.1016/j.jpowsour.2014.02.108 Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery 

  132. Appl. Therm. Eng. Panchal 122 80 2017 10.1016/j.applthermaleng.2017.05.010 Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery 

  133. SAE Int. Panchal 4 2 1 2015 Thermal management of lithium-ion pouch cell with indirect liquid cooling using dual cold plates approach 

  134. J. Automot. Saf. Energy Yuan 3 4 371 2012 Battery thermal management system with liquid cooling and heating in electric vehicles 

  135. Appl. Mech. Mater. Li 271 182 2013 Heat release and indirect liquid cooling of tractive lithium ion battery 

  136. Int. J. Energy Res. Wang 1 2017 Liquid cooling based on thermal silica plate for battery thermal management system 

  137. Energy Convers. Manage. Huo 89 387 2015 10.1016/j.enconman.2014.10.015 Investigation of power battery thermal management by using mini-channel cold plate 

  138. Energy Convers. Manage. Qian 126 622 2016 10.1016/j.enconman.2016.08.063 Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling 

  139. Appl. Therm. Eng. Xie 29 64 2009 10.1016/j.applthermaleng.2008.02.002 Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink 

  140. Int. J. Heat Mass Transf. Zhang 113 295 2017 10.1016/j.ijheatmasstransfer.2017.05.092 Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module 

  141. Appl. Energy Jin 113 1786 2014 10.1016/j.apenergy.2013.07.013 Ultra-thin minichannel LCP for EV battery thermal management 

  142. Appl. Therm. Eng. Bai 126 17 2017 10.1016/j.applthermaleng.2017.07.141 Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source 

  143. Energy Convers. Manage. Zhao 103 157 2015 10.1016/j.enconman.2015.06.056 Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery 

  144. Appl. Therm. Eng. Rao 123 1514 2017 10.1016/j.applthermaleng.2017.06.059 Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface 

  145. Appl. Therm. Eng. Zhang 116 655 2017 10.1016/j.applthermaleng.2017.01.069 Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process 

  146. SAE Int. Yeow 1 1 65 2012 Thermal analysis of a Li-ion battery system with indirect liquid cooling using finite element analysis approach 

  147. Int. Commun. Heat Mass Transf. Chiu 86 174 2017 10.1016/j.icheatmasstransfer.2017.05.027 The heat transfer characteristics of liquid cooling heat sink with micro pin fins 

  148. Appl. Therm. Eng. Wang 123 929 2017 10.1016/j.applthermaleng.2017.05.159 A forced gas cooling circle packaging with liquid cooling plate for the thermal management of Li-ion batteries under space environment 

  149. Appl. Therm. Eng. E 132 508 2018 10.1016/j.applthermaleng.2017.12.115 Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로