$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography 원문보기

IEEE transactions on medical imaging, v.37 no.6, 2018년, pp.1370 - 1381  

Zhang, Yanbo (University of Massachusetts at Lowell, Department of Electrical and Computer Engineering, Lowell, MA, USA) ,  Yu, Hengyong (University of Massachusetts at Lowell, Department of Electrical and Computer Engineering, Lowell, MA, USA)

Abstract AI-Helper 아이콘AI-Helper

In the presence of metal implants, metal artifacts are introduced to x-ray computed tomography CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past decades, MAR is still one of the major problems in clinical x-ray CT. In this paper, we develop a...

참고문헌 (53)

  1. Machine-learning-based nonlinear decomposition of CT images for metal artifact reduction park 2017 

  2. CT sinogram-consistency learning for metal-induced beam hardening correction park 2017 

  3. Chen, Hu, Zhang, Yi, Chen, Yunjin, Zhang, Junfeng, Zhang, Weihua, Sun, Huaiqiang, Lv, Yang, Liao, Peixi, Zhou, Jiliu, Wang, Ge. LEARN: Learned Experts’ Assessment-Based Reconstruction Network for Sparse-Data CT. IEEE transactions on medical imaging, vol.37, no.6, 1333-1347.

  4. Du, Wenchao, Chen, Hu, Wu, Zhihong, Sun, Huaiqiang, Liao, Peixi, Zhang, Yi. Stacked competitive networks for noise reduction in low-dose CT. PloS one, vol.12, no.12, e0190069-.

  5. Proc Int Meeting Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine Reducing metal streak artifacts in CT images via deep learning: Pilot results gjesteby 2017 611 

  6. Chen, Hu, Zhang, Yi, Zhang, Weihua, Liao, Peixi, Li, Ke, Zhou, Jiliu, Wang, Ge. aLow-dose CT via convolutional neural network. Biomedical optics express, vol.8, no.2, 679-.

  7. Convolutional neural network based metal artifact reduction in X-ray computed tomography zhang 2017 

  8. Proc SPIE Reduction of metal artifacts in X-ray CT images using a convolutional neural network zhang 2017 10391 103910v 

  9. 10.1117/12.2274427 

  10. Liu, Yan, Zhang, Yi. Low-dose CT restoration via stacked sparse denoising autoencoders. Neurocomputing, vol.284, 80-89.

  11. Wolterink, Jelmer M., Leiner, Tim, Viergever, Max A., Isgum, Ivana. Generative Adversarial Networks for Noise Reduction in Low-Dose CT. IEEE transactions on medical imaging, vol.36, no.12, 2536-2545.

  12. Chen, Hu, Zhang, Yi, Kalra, Mannudeep K., Lin, Feng, Chen, Yang, Liao, Peixi, Zhou, Jiliu, Wang, Ge. Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network. IEEE transactions on medical imaging, vol.36, no.12, 2524-2535.

  13. Proc SPIE Deep learning methods to guide CT image reconstruction and reduce metal artifacts gjesteby 2017 10.1117/12.2254091 10132 101322w 

  14. Gjesteby, Lars, De Man, Bruno, Jin, Yannan, Paganetti, Harald, Verburg, Joost, Giantsoudi, Drosoula, Wang, Ge. Metal Artifact Reduction in CT: Where Are We After Four Decades?. IEEE access : practical research, open solutions, vol.4, 5826-5849.

  15. De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P.. Metal streak artifacts in X-ray computed tomography: a simulation study. IEEE transactions on nuclear science, vol.46, no.3, 691-696.

  16. Zhang, Xiaomeng, Wang, Jing, Xing, Lei. Metal artifact reduction in x‐ray computed tomography (CT) by constrained optimization. Medical physics, vol.38, no.2, 701-711.

  17. Lemmens, C., Faul, D., Nuyts, J.. Suppression of Metal Artifacts in CT Using a Reconstruction Procedure That Combines MAP and Projection Completion. IEEE transactions on medical imaging, vol.28, no.2, 250-260.

  18. 10.1109/NSSMIC.2010.5874266 

  19. Zhang, Yanbo, Yan, Hao, Jia, Xun, Yang, Jian, Jiang, Steve B., Mou, Xuanqin. A hybrid metal artifact reduction algorithm for x‐ray CT. Medical physics, vol.40, no.4, 041910-.

  20. 10.1117/12.2008176 

  21. Jin, Kyong Hwan, McCann, Michael T., Froustey, Emmanuel, Unser, Michael. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.26, no.9, 4509-4522.

  22. Wang, Ge. A Perspective on Deep Imaging. IEEE access : practical research, open solutions, vol.4, 8914-8924.

  23. Yu, Hengyong, Zeng, Kai, Bharkhada, Deepak K., Wang, Ge, Madsen, Mark T., Saba, Osama, Policeni, Bruno, Howard, Matthew A., Smoker, Wendy R.K.. A Segmentation-Based Method for Metal Artifact Reduction. Academic radiology, vol.14, no.4, 495-504.

  24. 10.1117/12.2006810 

  25. 10.1109/CVPR.2016.90 

  26. Hegazy, Mohamed A. A., Cho, Min Hyoung, Lee, Soo Yeol. A metal artifact reduction method for a dental CT based on adaptive local thresholding and prior image generation. Biomedical engineering online, vol.15, 119-.

  27. Zhang, Yi, Pu, Yi-Fei, Hu, Jin-Rong, Liu, Yan, Chen, Qing-Li, Zhou, Ji-Liu. Efficient CT Metal Artifact Reduction Based on Fractional-Order Curvature Diffusion. Computational and mathematical methods in medicine : CMMM, vol.2011, 173748-.

  28. J X-Ray Sci Technol A new CT metal artifacts reduction algorithm based on fractional-order sinogram inpainting zhang 2011 10.3233/XST-2011-0300 19 373 

  29. Low Dose CT Grand Challenge 2016 

  30. 10.1148/radiology.164.2.3602406 

  31. Bal, Matthieu, Spies, Lothar. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering : Metal artifact reduction in CT. Medical physics, vol.33, no.8, 2852-2859.

  32. Meyer, Esther, Raupach, Rainer, Lell, Michael, Schmidt, Bernhard, Kachelrieß, Marc. Normalized metal artifact reduction (NMAR) in computed tomography. Medical physics, vol.37, no.10, 5482-5493.

  33. Prell, Daniel, Kyriakou, Yiannis, Beister, Marcel, Kalender, Willi A. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography. Physics in medicine & biology, vol.54, no.21, 6575-6591.

  34. Wang, Jun, Wang, Shijie, Chen, Yang, Wu, Jiasong, Coatrieux, Jean-Louis, Luo, Limin. Metal artifact reduction in CT using fusion based prior image : Metal artifact reduction in CT. Medical physics, vol.40, no.8, 081903-.

  35. Metal artifact reduction based on the combined prior image zhang 2014 

  36. Wang, Ge, Snyder, D.L., O'Sullivan, J.A., Vannier, M.W.. Iterative deblurring for CT metal artifact reduction. IEEE transactions on medical imaging, vol.15, no.5, 657-664.

  37. Wang, Ge, Vannier, Michael W., Cheng, Ping-Chin. Iterative X-ray Cone-Beam Tomography for Metal Artifact Reduction and Local Region Reconstruction. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, vol.5, no.1, 58-65.

  38. J X-Ray Sci Technol An experimental survey of metal artefact reduction in computed tomography mouton 2013 10.3233/XST-130372 21 193 

  39. Huang, Jessie Y, Kerns, James R, Nute, Jessica L, Liu, Xinming, Balter, Peter A, Stingo, Francesco C, Followill, David S, Mirkovic, Dragan, Howell, Rebecca M, Kry, Stephen F. An evaluation of three commercially available metal artifact reduction methods for CT imaging. Physics in medicine & biology, vol.60, no.3, 1047-1067.

  40. Hsieh, Jiang, Molthen, Robert C., Dawson, Christopher A., Johnson, Roger H.. An iterative approach to the beam hardening correction in cone beam CT. Medical physics, vol.27, no.1, 23-29.

  41. Hyoung Suk Park, Dosik Hwang, Jin Keun Seo. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector. IEEE transactions on medical imaging, vol.35, no.2, 480-487.

  42. Kachelrieß, Marc, Watzke, Oliver, Kalender, Willi A.. Generalized multi‐dimensional adaptive filtering for conventional and spiral single‐slice, multi‐slice, and cone‐beam CT. Medical physics, vol.28, no.4, 475-490.

  43. 10.1109/NSSMIC.2010.5874473 

  44. Wang, Zhou, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.13, no.4, 600-612.

  45. Mehranian, Abolfazl, Ay, Mohammad Reza, Rahmim, Arman, Zaidi, Habib. X-ray CT Metal Artifact Reduction Using Wavelet Domain $L_{0}$ Sparse Regularization. IEEE transactions on medical imaging, vol.32, no.9, 1707-1722.

  46. J X-Ray Sci Technol Application of projection simulation based on physical imaging model to the evaluation of beam hardening corrections in X-ray transmission tomography tang 2008 16 95 

  47. XCOM Photon cross sections database berger 1998 

  48. MatConvNet CNNs for MATLAB 2017 

  49. 10.1145/2733373.2807412 

  50. Elbakri, I.A., Fessler, J.A.. Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE transactions on medical imaging, vol.21, no.2, 89-99.

  51. Kyriakou, Yiannis, Meyer, Esther, Prell, Daniel, Kachelrieß, Marc. Empirical beam hardening correction (EBHC) for CT. Medical physics, vol.37, no.10, 5179-5187.

  52. Verburg, Joost M, Seco, Joao. CT metal artifact reduction method correcting for beam hardening and missing projections. Physics in medicine & biology, vol.57, no.9, 2803-2818.

  53. IEEE Trans Med Imag Low-dose X-ray CT reconstruction via dictionary learning xu 2012 10.1109/TMI.2012.2195669 31 1682 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로