$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering

Journal of biomaterials science, Polymer edition, v.29 no.7/9, 2018년, pp.917 - 931  

Ahn, Chi Bum (Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Korea) ,  Kim, Youngjo (Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Republic of Korea) ,  Park, Sung Jean (College of Pharmacy, Gachon University, Incheon, Korea) ,  Hwang, Yongsung (Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Republic of Korea) ,  Lee, Jin Woo (Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Korea)

Abstract AI-Helper 아이콘AI-Helper

Poly(propylene fumarate) (PPF) has known to be a good candidate material for cartilage tissue regeneration because of its excellent mechanical properties during its degradation processes. Here, we describe the potential application of PPF-based materials as 3D printing bioinks to create macroporous ...

참고문헌 (54)

  1. Varghese, S., Theprungsirikul, P., Sahani, S., Hwang, N., Yarema, K.J., Elisseeff, J.H.. Glucosamine modulates chondrocyte proliferation, matrix synthesis, and gene expression. Osteoarthritis and cartilage, vol.15, no.1, 59-68.

  2. Wang, Dong-An, Varghese, Shyni, Sharma, Blanka, Strehin, Iossif, Fermanian, Sara, Gorham, Justin, Fairbrother, D. Howard, Cascio, Brett, Elisseeff, Jennifer H.. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nature materials, vol.6, no.5, 385-392.

  3. Li, Wan-Ju, Tuli, Richard, Okafor, Chukwuka, Derfoul, Assia, Danielson, Keith G, Hall, David J, Tuan, Rocky S. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, vol.26, no.6, 599-609.

  4. Jung, Youngmee, Kim, Sang-Heon, Kim, Young Ha, Kim, Soo Hyun. The Effect of Hybridization of Hydrogels and Poly(L-lactide-co-ε-caprolactone) Scaffolds on Cartilage Tissue Engineering. Journal of biomaterials science, Polymer edition, vol.21, no.5, 581-592.

  5. Trzeciak, Tomasz, Rybka, Jakub Dalibor, Richter, Magdalena, Kaczmarczyk, Jacek, Ramalingam, Murugan, Giersig, Michael. Cells and Nanomaterial-Based Tissue Engineering Techniques in the Treatment of Bone and Cartilage Injuries. Journal of nanoscience and nanotechnology, vol.16, no.9, 8948-8952.

  6. Donnelly, Patrick E., Chen, Tony, Finch, Anthony, Brial, Caroline, Maher, Suzanne A., Torzilli, Peter A.. Photocrosslinked tyramine-substituted hyaluronate hydrogels with tunable mechanical properties improve immediate tissue-hydrogel interfacial strength in articular cartilage. Journal of biomaterials science, Polymer edition, vol.28, no.6, 582-600.

  7. Hutmacher, Dietmar W.. Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives. Journal of biomaterials science, Polymer edition, vol.12, no.1, 107-124.

  8. Knoll, Grant A., Romanelli, Steven M., Brown, Alexandra M., Sortino, Rachel M., Banerjee, Ipsita A.. Multilayered Short Peptide-Alginate Blends as New Materials for Potential Applications in Cartilage Tissue Regeneration. Journal of nanoscience and nanotechnology, vol.16, no.3, 2464-2473.

  9. Huang, B.J., Hu, J.C., Athanasiou, K.A.. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials, vol.98, 1-22.

  10. Li, Guo, Fu, Na, Xie, Jing, Fu, Yao, Deng, Shuwen, Cun, Xiangzhu, Wei, Xueqin, Peng, Qiang, Cai, Xiaoxiao, Lin, Yunfeng. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Based Electrospun 3D Scaffolds for Delivery of Autogeneic Chondrocytes and Adipose-Derived Stem Cells: Evaluation of Cartilage Defects in Rabbit.. Journal of biomedical nanotechnology, vol.11, no.1, 105-116.

  11. Hwang, Yongsung, Phadke, Ameya, Varghese, Shyni. Engineered Microenvironments for Self-Renewal and Musculoskeletal Differentiation of Stem Cells. Regenerative medicine, vol.6, no.4, 505-524.

  12. Lim, Han L., Hwang, Yongsung, Kar, Mrityunjoy, Varghese, Shyni. Smart hydrogels as functional biomimetic systems. Biomaterials science, vol.2, no.5, 603-618.

  13. Liao, JinFeng, Qu, Ying, Chu, BingYang, Zhang, XiaoNing, Qian, ZhiYong. Biodegradable CSMA/PECA/Graphene Porous Hybrid Scaffold for Cartilage Tissue Engineering. Scientific reports, vol.5, 9879-.

  14. Hung, K.C., Tseng, C.S., Dai, L.G., Hsu, S.h.. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials, vol.83, 156-168.

  15. Freed, Lisa E., Vunjak-Novakovic, Gordana, Biron, Robert J., Eagles, Dana B., Lesnoy, Daniel C., Barlow, Sandra K., Langer, Robert. Biodegradable Polymer Scaffolds for Tissue Engineering. Bio/technology, vol.12, no.7, 689-693.

  16. Luu, Y.K., Kim, K., Hsiao, B.S., Chu, B., Hadjiargyrou, M.. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. Journal of controlled release : official journal of the Controlled Release Society, vol.89, no.2, 341-353.

  17. Hwang, Yongsung, Sangaj, Nivedita, Varghese, Shyni. Interconnected Macroporous Poly(Ethylene Glycol) Cryogels as a Cell Scaffold for Cartilage Tissue Engineering. Tissue engineering. Part A, vol.16, no.10, 3033-3041.

  18. Murphy, Sean V, Atala, Anthony. 3D bioprinting of tissues and organs. Nature biotechnology, vol.32, no.8, 773-785.

  19. Pati, F., Song, T.H., Rijal, G., Jang, J., Kim, S.W., Cho, D.W.. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials, vol.37, 230-241.

  20. Wang, Xiaocheng, Li, Tao, Ma, Hongshi, Zhai, Dong, Jiang, Chuan, Chang, Jiang, Wang, Jinwu, Wu, Chengtie. A 3D-printed scaffold with MoS2 nanosheets for tumor therapy and tissue regeneration. NPG Asia Materials, vol.9, no.4, e376-e376.

  21. Trachtenberg, Jordan E., Placone, Jesse K., Smith, Brandon T., Fisher, John P., Mikos, Antonios G.. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. Journal of biomaterials science, Polymer edition, vol.28, no.6, 532-554.

  22. Cooke, Malcolm N., Fisher, John P., Dean, David, Rimnac, Clare, Mikos, Antonios G.. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Journal of biomedical materials research. Part B, Applied biomaterials, vol.b64, no.2, 65-69.

  23. Du, Dajiang, Asaoka, Teruo, Shinohara, Makoto, Kageyama, Tomonori, Ushida, Takashi, Furukawa, Katsuko Sakai. Microstereolithography-Based Fabrication of Anatomically Shaped Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering. BioMed research international, vol.2015, 859456-.

  24. Leong, K.F., Cheah, C.M., Chua, C.K.. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, vol.24, no.13, 2363-2378.

  25. Timmer, Mark D., Horch, R. Adam, Ambrose, Catherine G., Mikos, Antonios G.. Effect of physiological temperature on the mechanical properties and network structure of biodegradable poly(propylene fumarate)-based networks. Journal of biomaterials science, Polymer edition, vol.14, no.4, 369-382.

  26. Timmer, Mark D, Ambrose, Catherine G, Mikos, Antonios G. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials, vol.24, no.4, 571-577.

  27. Liu, Xifeng, Miller II, A. Lee, Waletzki, Brian E., Yaszemski, Michael J., Lu, Lichun. Novel biodegradable poly(propylene fumarate)-co-poly(L-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications. RSC advances, vol.5, no.27, 21301-21309.

  28. Wang, S., Lu, L., Yaszemski, M. J.. Bone-Tissue-Engineering Material Poly(propylene fumarate): Correlation between Molecular Weight, Chain Dimensions, and Physical Properties. Biomacromolecules, vol.7, no.6, 1976-1982.

  29. Fisher, John P, Dean, David, Mikos, Antonios G. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials, vol.23, no.22, 4333-4343.

  30. P.Fisher, John, Holland, Theresa A., Dean, David, Engel, Paul S., Mikos, Antonios G.. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. Journal of biomaterials science, Polymer edition, vol.12, no.6, 673-687.

  31. Beke, S, Anjum, F, Ceseracciu, L, Romano, I, Athanassiou, A, Diaspro, A, Brandi, F. Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm. Laser physics, vol.23, no.3, 035602-.

  32. Walker, Jason M., Bodamer, Emily, Krebs, Olivia, Luo, Yuanyuan, Kleinfehn, Alex, Becker, Matthew L., Dean, David. Effect of Chemical and Physical Properties on the In Vitro Degradation of 3D Printed High Resolution Poly(propylene fumarate) Scaffolds. Biomacromolecules, vol.18, no.4, 1419-1425.

  33. Tang, Aimin, Li, Jiao, Zhao, Shan, Liu, Tingting, Wang, Qinwen, Wang, Jufang. Biodegradable Tissue Engineering Scaffolds Based on Nanocellulose/PLGA Nanocomposite for NIH 3T3 Cell Cultivation. Journal of nanoscience and nanotechnology, vol.17, no.6, 3888-3895.

  34. Hersel, Ulrich, Dahmen, Claudia, Kessler, Horst. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, vol.24, no.24, 4385-4415.

  35. Cooke, Malcolm N., Fisher, John P., Dean, David, Rimnac, Clare, Mikos, Antonios G.. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Journal of biomedical materials research. Part B, Applied biomaterials, vol.b64, no.2, 65-69.

  36. Sawyer, A.A., Hennessy, K.M., Bellis, S.L.. Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins. Biomaterials, vol.26, no.13, 1467-1475.

  37. Wang, Martha O., Vorwald, Charlotte E., Dreher, Maureen L., Mott, Eric J., Cheng, Ming‐Huei, Cinar, Ali, Mehdizadeh, Hamidreza, Somo, Sami, Dean, David, Brey, Eric M., Fisher, John P.. Evaluating 3D‐Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering. Advanced materials, vol.27, no.1, 138-144.

  38. Wallace, Jonathan, Wang, Martha O, Thompson, Paul, Busso, Mallory, Belle, Vaijayantee, Mammoser, Nicole, Kim, Kyobum, Fisher, John P, Siblani, Ali, Xu, Yueshuo, Welter, Jean F, Lennon, Donald P, Sun, Jiayang, Caplan, Arnold I, Dean, David. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package. Biofabrication, vol.6, no.1, 015003-.

  39. Ho, Ming-Hua, Hou, Lein-Tuan, Tu, Chen-Yuan, Hsieh, Hsyue-Jen, Lai, Juin-Yih, Chen, Wei-Jung, Wang, Da-Ming. Promotion of Cell Affinity of Porous PLLA Scaffolds by Immobilization of RGD Peptides via Plasma Treatment. Macromolecular bioscience, vol.6, no.1, 90-98.

  40. Chu, P.K, Chen, J.Y, Wang, L.P, Huang, N. Plasma-surface modification of biomaterials. Materials science & engineering. a review journal. R, Reports, vol.36, no.5, 143-206.

  41. Lee, Chang-Min, Yang, Seong-Won, Jung, Sang-Chul, Kim, Byung-Hoon. Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Journal of nanoscience and nanotechnology, vol.17, no.4, 2747-2750.

  42. Park, Young-Ouk, Myung, Sung-Woon, Kook, Min-Suk, Jung, Sang-Chul, Kim, Byung-Hoon. Cell Proliferation on Macro/Nano Surface Structure and Collagen Immobilization of 3D Polycaprolactone Scaffolds. Journal of nanoscience and nanotechnology, vol.16, no.2, 1415-1419.

  43. 10.1002/(ISSN)1097-4636 

  44. Lan, Phung Xuan, Lee, Jin Woo, Seol, Young-Joon, Cho, Dong-Woo. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. Journal of materials science, Materials in medicine, vol.20, no.1, 271-279.

  45. Lee, In Hwan, Cho, Dong-Woo. Micro-stereolithography photopolymer solidification patterns for various laser beam exposure conditions. International journal of advanced manufacturing technology, vol.22, no.5, 410-416.

  46. 10.1002/(ISSN)1097-4636 

  47. Shahbazi, Sara, Jafari, Yaser, Moztarzadeh, Fathollah, Mir Mohamad Sadeghi, Gity. Evaluation of effective parameters for the synthesis of poly(propylene fumarate) by response surface methodology. Journal of applied polymer science, vol.131, no.20,

  48. Lee, Jin Woo, Ahn, Geunseon, Kim, Jong Young, Cho, Dong-Woo. Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. Journal of materials science, Materials in medicine, vol.21, no.12, 3195-3205.

  49. Chia, Helena N, Wu, Benjamin M. Recent advances in 3D printing of biomaterials. Journal of biological engineering, vol.9, 4-.

  50. Loh, Qiu Li, Choong, Cleo. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue engineering. Part B, Reviews, vol.19, no.6, 485-502.

  51. Annabi, Nasim, Nichol, Jason W., Zhong, Xia, Ji, Chengdong, Koshy, Sandeep, Khademhosseini, Ali, Dehghani, Fariba. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue engineering. Part B, Reviews, vol.16, no.4, 371-383.

  52. Shu, Xiao Zheng, Ghosh, Kaustabh, Liu, Yanchun, Palumbo, Fabio S., Luo, Yi, Clark, Richard A., Prestwich, Glenn D.. Attachment and spreading of fibroblasts on an RGD peptide–modified injectable hyaluronan hydrogel. Journal of biomedical materials research. Part A, vol.a68, no.2, 365-375.

  53. Petrie, Timothy A., Capadona, Jeffrey R., Reyes, Catherine D., García, Andrés J.. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials, vol.27, no.31, 5459-5470.

  54. Kim, Hwan D., Heo, Jiseung, Hwang, Yongsung, Kwak, Seon-Yeong, Park, Ok Kyu, Kim, Hyunbum, Varghese, Shyni, Hwang, Nathaniel S.. Extracellular-Matrix-Based and Arg-Gly-Asp-Modified Photopolymerizing Hydrogels for Cartilage Tissue Engineering. Tissue engineering. Part A, vol.21, no.3, 757-766.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로