$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise 원문보기

Journal of nutrition and metabolism, v.2010, 2010년, pp.905612 -   

Baker, Julien S. (Health and Exercise Science Research Laboratory, School of Science, University of the West of Scotland, Hamilton Campus, Almada Street, Hamilton ML3 0JB, UK) ,  McCormick, Marie Clare (Health and Exercise Science Research Laboratory, School of Science, University of the West of Scotland, Hamilton Campus, Almada Street, Hamilton ML3 0JB, UK) ,  Robergs, Robert A. (School of Human Movement Studies, Charles Sturt University, Bathurst, NSW 2795, Australia)

Abstract AI-Helper 아이콘AI-Helper

High-intensity exercise can result in up to a 1,000-fold increase in the rate of ATP demand compared to that at rest (Newsholme et al., 1983). To sustain muscle contraction, ATP needs to be regenerated at a rate complementary to ATP demand. Three energy systems function to replenish ATP in muscle: (...

참고문헌 (53)

  1. 1 Glaister M Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness Sports Medicine 2005 35 9 757 777 16138786 

  2. 2 Spriet LL Anaerobic metabolism in human skeletal muscle during short-term, intense activity Canadian Journal of Physiology and Pharmacology 1992 70 1 157 165 1581850 

  3. 3 Bigland-Ritchie B Woods JJ Changes in muscle contractile properties and neural control during human muscular fatigue Muscle and Nerve 1984 7 9 691 699 6100456 

  4. 4 Søgaard K Gandevia SC Todd G Petersen NT Taylor JL The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles Journal of Physiology 2006 573 2 511 523 16556656 

  5. 5 Bogdanis GC Nevill ME Boobis LH Lakomy HKA Nevill AM Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man Journal of Physiology 1995 482 2 467 480 7714837 

  6. 6 Bogdanis GC Nevill ME Boobis LH Lakomy HKA Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise Journal of Applied Physiology 1996 80 3 876 884 8964751 

  7. 7 Bogdanis GC Nevill ME Lakomy HKA Boobis LH Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans Acta Physiologica Scandinavica 1998 163 3 261 272 9715738 

  8. 8 Jacobs I Bar Or O Karlsson J Changes in muscle metabolites in females with 30-s exhaustive exercise Medicine and Science in Sports and Exercise 1982 14 6 457 460 7162392 

  9. 9 Vollestad NK Sejersted OM Biochemical correlates of fatigue. A brief review European Journal of Applied Physiology and Occupational Physiology 1988 57 3 336 347 3286252 

  10. 10 Atkinson DE Cellular Energy Metabolism and Its Regulation 1977 1st edition New York, NY, USA Academic Press 

  11. 11 Norman B Glenmark B Jansson E Muscle AMP deaminase deficiency in 2% of a healthy population Muscle and Nerve 1995 18 2 239 241 7823986 

  12. 12 Norman B Sabina RL Jansson E Regulation of skeletal muscle ATP catabolism by AMPD1 genotype during sprint exercise in asymptomatic subjects Journal of Applied Physiology 2001 91 1 258 264 11408438 

  13. 13 Verzijl HTFM Van Engelen BGM Luyten JAFM Genetic characteristics of myoadenylate deaminase deficiency Annals of Neurology 1998 44 1 140 143 9667605 

  14. 14 Fischer H Esbjörnsson M Sabina RL Strömberg A Peyrard-Janvid M Norman B AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects Journal of Applied Physiology 2007 103 1 315 322 17463303 

  15. 15 Bassini-Cameron A Monteiro A Gomes A Werneck-de-Castro JPS Cameron L Glutamine protects against increases in blood ammonia in football players in an exercise intensity-dependent way British Journal of Sports Medicine 2008 42 4 260 266 17984189 

  16. 16 Casas H Murtra B Casas M Increased blood ammonia in hypoxia during exercise in humans Journal of Physiology and Biochemistry 2001 57 4 303 312 12005033 

  17. 17 Berg JM Tymoczko JL Stryer L Biochemistry 2002 5th edition New York, NY, USA W. H. Freeman 

  18. 18 Medbø JI Burgers S Effect of training on the anaerobic capacity Medicine and Science in Sports and Exercise 1990 22 4 501 507 2402211 

  19. 19 Kemp GJ Roussel M Bendahan D Le Fur Y Cozzone PJ Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by 31P magnetic resonance spectroscopy Journal of Physiology 2001 535 3 901 928 11559784 

  20. 20 Casey A Constantin-Teodosiu D Howell S Hultman E Greenhaff PL Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans American Journal of Physiology 1996 271 1 E38 E43 8760079 

  21. 21 Åstrand PO Rodahl K Textbook of Work Physiology 1986 3rd edition New York, NY, USA McGraw-Hill 

  22. 22 Greenhaff PL Nevill ME Soderlund K The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting Journal of Physiology 1994 478 1 149 155 7965830 

  23. 23 Greenhaff PL Timmons JA Interaction between aerobic and anaerobic metabolism during intense muscle contraction Exercise and Sport Sciences Reviews 1998 26 1 36 9696983 

  24. 24 Maughan RJ Gleeson M Greenhaff PL Biochemistry of Exercise and Training 1997 New York, NY, USA Oxford University Press 

  25. 25 Sahlin K Harris RC Hultman E Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen Scandinavian Journal of Clinical and Laboratory Investigation 1979 39 6 551 558 43580 

  26. 26 Withers RT Sherman WM Clark DG Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer European Journal of Applied Physiology and Occupational Physiology 1991 63 5 354 362 1773812 

  27. 27 Walter G Vandenborne K McCully KK Leigh JS Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles American Journal of Physiology 1997 272 2 C525 C534 9124295 

  28. 28 Siegler JC Bell-Wilson J Mermier C Faria E Robergs RA Active and passive recovery and acid-base kinetics following multiple bouts of intense exercise to exhaustion International Journal of Sport Nutrition and Exercise Metabolism 2006 16 1 92 107 16676706 

  29. 29 McMahon S Jenkins D Factors affecting the rate of phosphocreatine resynthesis following intense exercise Sports Medicine 2002 32 12 761 784 12238940 

  30. 30 Harris RC Edwards RHT Hultman E The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man Pflugers Archiv European Journal of Physiology 1976 367 2 137 142 1034909 

  31. 31 Forbes SC Paganini AT Slade JM Towse TF Meyer RA Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles American Journal of Physiology 2009 296 1 R161 R170 18945946 

  32. 32 Newcomer BR Boska MD Hetherington HP Non-P(i) buffer capacity and initial phosphocreatine breakdown and resynthesis kinetics of human gastrocnemius/soleus muscle groups using 0.5 s time-resolved 31 P MRS at 4.1 T NMR in Biomedicine 1999 12 8 545 551 10668047 

  33. 33 Quistorff B Johansen L Sahlin K Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery Biochemical Journal 1992 291 3 681 686 

  34. 34 Taylor DJ Bore PJ Styles P Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study Molecular Biology and Medicine 1983 1 1 77 94 6679873 

  35. 35 Crowther GJ Kemper WF Carey MF Conley KE Control of glycolysis in contracting skeletal muscle. II. Turning it off American Journal of Physiology 2002 282 1 E74 E79 11739086 

  36. 36 Pilegaard H Domino K Noland T Effect of high-intensity exercise training on lactate/H + transport capacity in human skeletal muscle American Journal of Physiology 1999 276 2 E255 E261 9950784 

  37. 37 Jones NL McCartney N Graham T Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds Journal of Applied Physiology 1985 59 1 132 136 4030556 

  38. 38 Jones NL McCartney N Influence of muscle power on aerobic performance and the effects of training Acta Medica Scandinavica 1986 220 711 115 122 

  39. 39 Beneke R Pollmann C Bleif I Leithäuser RM Hütler H How anaerobic is the wingate anaerobic test for humans? European Journal of Applied Physiology 2002 87 4-5 388 392 12172878 

  40. 40 Ren J-M Hultman E Regulation of glycogenolysis in human skeletal muscle Journal of Applied Physiology 1989 67 6 2243 2248 2606829 

  41. 41 Serresse O Lortie G Bouchard C Boulay MR Estimation of the contribution of the various energy systems during maximal work of short duration International Journal of Sports Medicine 1988 9 6 456 460 3253239 

  42. 42 Smith JC Hill DW Contribution of energy systems during a Wingate power test British Journal of Sports Medicine 1991 25 4 196 199 1839780 

  43. 43 Van Someron K Whyte G The physiology of anaerobic training The Physiology of Training 2006 Oxford, UK Elsevier 85 115 

  44. 44 Medbø JI Tabata I Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise Journal of Applied Physiology 1989 67 5 1881 1886 2600022 

  45. 45 Robergs RA Ghiasvand F Parker D Biochemistry of exercise-induced metabolic acidosis American Journal of Physiology 2004 287 3 R502 R516 15308499 

  46. 46 Balsom PD Gaitanos GC Ekblom B Sjodin B Reduced oxygen availability during high intensity intermittent exercise impairs performance Acta Physiologica Scandinavica 1994 152 3 279 285 7872005 

  47. 47 Gladden LB Lactate metabolism: a new paradigm for the third millennium Journal of Physiology 2004 558 1 5 30 15131240 

  48. 48 Fletcher WM Hopkins FG Lactic acid in amphibian muscle The Journal of Physiology 1907 35 247 309 16992858 

  49. 49 Hill AV Lupton H Muscular exercise, lactic acid and the supply and utilization of oxygen The Quarterly Journal of Medicine 1923 16 135 171 

  50. 50 Margaria R Edwards HT Dill DB The possible mechanism of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction American Journal of Physiology 1933 106 689 714 

  51. 51 Hermansen L Glycolitic and oxidative energy metabolism and contraction characteristics of intact human muscle Human Muscle Fatigue: Physiological Mechanisms 1981 London, UK Pittman Medical 75 88 Ciba Found Symposium, no. 82 

  52. 52 Gevers W Generation of protons by metabolic processes other than glycolysis in muscle cells: a critical view Journal of Molecular and Cellular Cardiology 1979 11 3 325 330 34042 

  53. 53 Robergs RA Exercise-induced metabolic acidosis: where do the protons come from? Sportscience 2001 5 2 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로