$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review 원문보기

Journal of neuroengineering and rehabilitation, v.14, 2017년, pp.24 -   

Nam, Ki Yeun (Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang, Korea) ,  Kim, Hyun Jung (Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea) ,  Kwon, Bum Sun (Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang, Korea) ,  Park, Jin-Woo (Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang, Korea) ,  Lee, Ho Jun (Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang, Korea) ,  Yoo, Aeri (Central Seoul Eye Center, Seoul, South Korea)

Abstract AI-Helper 아이콘AI-Helper

AbstractRobot-assisted gait training (RAGT) after spinal cord injury (SCI) induces several different neurophysiological mechanisms to restore walking ability, including the activation of central pattern generators, task-specific stepping practice and massed exercise. However, there is no clear evide...

주제어

참고문헌 (63)

  1. 1. Hu XL Tong KY Li R Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke Conf Proc IEEE Eng Med Biol Soc 2010 2010 5819 5822 21096914 

  2. 2. Morawietz C Moffat F Effects of locomotor training after incomplete spinal cord injury: a systematic review Arch Phys Med Rehabil 2013 94 2297 2308 10.1016/j.apmr.2013.06.023 23850614 

  3. 3. Hubli M Dietz V The physiological basis of neurorehabilitation--locomotor training after spinal cord injury J Neuroeng Rehabil 2013 10 5 10.1186/1743-0003-10-5 23336934 

  4. 4. Dietz V Wirz M Curt A Colombo G Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function Spinal Cord 1998 36 380 390 10.1038/sj.sc.3100590 9648193 

  5. 5. Tefertiller C Pharo B Evans N Winchester P Efficacy of rehabilitation robotics for walking training in neurological disorders: a review J Rehabil Res Dev 2011 48 387 416 10.1682/JRRD.2010.04.0055 21674390 

  6. 6. Dobkin BH Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks Prog Brain Res 2000 128 99 111 10.1016/S0079-6123(00)28010-2 11105672 

  7. 7. Winchester P McColl R Querry R Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury Neurorehabil Neural Repair 2005 19 313 324 10.1177/1545968305281515 16263963 

  8. 8. Moher D Liberati A Tetzlaff J Altman DG Group P Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement Int J Surg 2010 8 336 341 10.1016/j.ijsu.2010.02.007 20171303 

  9. 9. Ditunno JF Jr Young W Donovan WH Creasey G The international standards booklet for neurological and functional classification of spinal cord injury. American Spinal Injury Association Paraplegia 1994 32 70 80 10.1038/sc.1994.13 8015848 

  10. 10. Weinberger DREB Giedd JN The adolescent brain: a work in progress 2005 Washington (DC) The National Campaign to Prevent Teen Pregnancy 

  11. 11. Maher CG Sherrington C Herbert RD Moseley AM Elkins M Reliability of the PEDro scale for rating quality of randomized controlled trials Phys Ther 2003 83 713 721 12882612 

  12. 12. de Morton NA The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study Aust J Physiother 2009 55 129 133 10.1016/S0004-9514(09)70043-1 19463084 

  13. 13. Hahne AJ Ford JJ McMeeken JM Conservative management of lumbar disc herniation with associated radiculopathy: a systematic review Spine 2010 35 E488 504 10.1097/BRS.0b013e3181cc3f56 20421859 

  14. 14. Sally Green JPH Cochrane Handbook for Systematic Reviews of Interventions version 5.1.0 2011 

  15. 15. Higgins JP Thompson SG Deeks JJ Altman DG Measuring inconsistency in meta-analyses BMJ 2003 327 557 560 10.1136/bmj.327.7414.557 12958120 

  16. 16. Duffell LD Brown GL Mirbagheri MM Interventions to Reduce Spasticity and Improve Function in People With Chronic Incomplete Spinal Cord Injury: Distinctions Revealed by Different Analytical Methods Neurorehabil Neural Repair 2015 29 566 576 10.1177/1545968314558601 25398727 

  17. 17. Field-Fote EC Roach KE Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial Phys Ther 2011 91 48 60 10.2522/ptj.20090359 21051593 

  18. 18. Hornby TGCD Zemon DH Kahn JH Clinical and Quantitative Evaluation of Robotic-Assisted Treadmill Walking to Retrain Ambulation After Spinal Cord Injury Topics in Spinal Cord Injury Rehabilitation 2005 11 1 17 10.1310/14Q9-AD7M-FXX9-1G2J 

  19. 19. Niu X Varoqui D Kindig M Mirbagheri MM Prediction of gait recovery in spinal cord injured individuals trained with robotic gait orthosis J Neuroeng Rehabil 2014 11 42 10.1186/1743-0003-11-42 24661681 

  20. 20. Varoqui D Niu X Mirbagheri MM Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury J Neuroeng Rehabil 2014 11 46 10.1186/1743-0003-11-46 24684813 

  21. 21. Alcobendas-Maestro M Esclarin-Ruz A Casado-Lopez RM Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial Neurorehabil Neural Repair 2012 26 1058 1063 10.1177/1545968312448232 22699827 

  22. 22. Esclarin-Ruz A Alcobendas-Maestro M Casado-Lopez R A comparison of robotic walking therapy and conventional walking therapy in individuals with upper versus lower motor neuron lesions: a randomized controlled trial Arch Phys Med Rehabil 2014 95 1023 1031 10.1016/j.apmr.2013.12.017 24393781 

  23. 23. Labruyere R van Hedel HJ Strength training versus robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study in patients depending on walking assistance J Neuroeng Rehabil 2014 11 4 10.1186/1743-0003-11-4 24401143 

  24. 24. Tang Q Huang Q Hu C Research on Design Theory and Compliant Control for Underactuated Lower-extremity Rehabilitation Robotic Systems code: (51175368); 2012.01-2015.12 J Phys Ther Sci 2014 26 1597 1599 10.1589/jpts.26.1597 25364122 

  25. 25. Shin JC Kim JY Park HK Kim NY Effect of robotic-assisted gait training in patients with incomplete spinal cord injury Annals of rehabilitation medicine 2014 38 719 725 10.5535/arm.2014.38.6.719 25566469 

  26. 26. Duffell LD Niu X Brown G Mirbagheri MM Variability in responsiveness to interventions in people with spinal cord injury: Do some respond better than others? Conf Proc IEEE Eng Med Biol Soc 2014 2014 5872 5875 25571332 

  27. 27. Field-Fote EC Lindley SD Sherman AL Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes J Neurol Phys Ther 2005 29 127 137 10.1097/01.NPT.0000282245.31158.09 16398945 

  28. 28. Postans NJ Hasler JP Granat MH Maxwell DJ Functional electric stimulation to augment partial weight-bearing supported treadmill training for patients with acute incomplete spinal cord injury: A pilot study Arch Phys Med Rehabil 2004 85 604 610 10.1016/j.apmr.2003.08.083 15083437 

  29. 29. Dobkin B Apple D Barbeau H Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI Neurology 2006 66 484 493 10.1212/01.wnl.0000202600.72018.39 16505299 

  30. 30. Dobkin B Barbeau H Deforge D The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial Neurorehabil Neural Repair 2007 21 25 35 10.1177/1545968306295556 17172551 

  31. 31. Lucareli PR Lima MO Lima FP de Almeida JG Brech GC D’Andrea Greve JM Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study Spinal Cord 2011 49 1001 1007 10.1038/sc.2011.37 21537338 

  32. 32. Dobkin BH Neuroplasticity. Key to recovery after central nervous system injury West J Med 1993 159 56 60 8351906 

  33. 33. Blesch A Tuszynski MH Spinal cord injury: plasticity, regeneration and the challenge of translational drug development Trends Neurosci 2009 32 41 47 10.1016/j.tins.2008.09.008 18977039 

  34. 34. Marino RJ Barros T Biering-Sorensen F International standards for neurological classification of spinal cord injury J Spinal cord Med 2003 26 Suppl 1 S50 56 10.1080/10790268.2003.11754575 

  35. 35. Barbeau H Rossignol S Recovery of locomotion after chronic spinalization in the adult cat Brain Res 1987 412 84 95 10.1016/0006-8993(87)91442-9 3607464 

  36. 36. Barbeau H Danakas M Arsenault B The effects of locomotor training in spinal cord injured subjects: a preliminary study Restor Neurol Neurosci 1993 5 81 84 21551701 

  37. 37. Colombo G Joerg M Schreier R Dietz V Treadmill training of paraplegic patients using a robotic orthosis J Rehabil Res Dev 2000 37 693 700 11321005 

  38. 38. Wernig A Muller S Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries Paraplegia 1992 30 229 238 10.1038/sc.1992.61 1625890 

  39. 39. Harvey LA Physiotherapy rehabilitation for people with spinal cord injuries J Physiother 2016 62 4 11 10.1016/j.jphys.2015.11.004 26701156 

  40. 40. Mehrholz J Kugler J Pohl M Locomotor training for walking after spinal cord injury Cochrane Database Syst Rev 2012 11 Cd006676 23152239 

  41. 41. Nightingale EJ Raymond J Middleton JW Crosbie J Davis GM Benefits of FES gait in a spinal cord injured population Spinal Cord 2007 45 646 657 10.1038/sj.sc.3102101 17646840 

  42. 42. Field-Fote EC Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury Arch Phys Med Rehabil 2001 82 818 824 10.1053/apmr.2001.23752 11387589 

  43. 43. Hannold EM Young ME Rittman MR Bowden MG Behrman AL Locomotor training: experiencing the changing body J Rehabil Res Dev 2006 43 905 916 10.1682/JRRD.2005.07.0122 17436176 

  44. 44. Schwartz I Meiner Z Robotic-assisted gait training in neurological patients: who may benefit? Ann Biomed Eng 2015 43 1260 1269 10.1007/s10439-015-1283-x 25724733 

  45. 45. Hesse S Malezic M Schaffrin A Mauritz KH Restoration of gait by combined treadmill training and multichannel electrical stimulation in non-ambulatory hemiparetic patients Scand J Rehabil Med 1995 27 199 204 8650503 

  46. 46. Billinger SA Arena R Bernhardt J Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke 2014 45 2532 2553 10.1161/STR.0000000000000022 24846875 

  47. 47. Hoekstra F van Nunen MP Gerrits KH Stolwijk-Swuste JM Crins MH Janssen TW Effect of robotic gait training on cardiorespiratory system in incomplete spinal cord injury J Rehabil Res Dev 2013 50 1411 1422 10.1682/JRRD.2012.10.0186 24699976 

  48. 48. Gordon KE Wald MJ Schnitzer TJ Effect of parathyroid hormone combined with gait training on bone density and bone architecture in people with chronic spinal cord injury PM R 2013 5 663 671 10.1016/j.pmrj.2013.03.032 23558091 

  49. 49. Freivogel S Mehrholz J Husak-Sotomayor T Schmalohr D Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study Brain Inj 2008 22 625 632 10.1080/02699050801941771 18568717 

  50. 50. Hesse S Waldner A Tomelleri C Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients J Neuroeng Rehabil 2010 7 30 10.1186/1743-0003-7-30 20584307 

  51. 51. Louie DR Eng JJ Lam T Spinal Cord Injury Research Evidence Research T. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study J Neuroeng Rehabil 2015 12 82 10.1186/s12984-015-0074-9 26463355 

  52. 52. Freivogel S Schmalohr D Mehrholz J Improved walking ability and reduced therapeutic stress with an electromechanical gait device J Rehabil Med 2009 41 734 739 10.2340/16501977-0422 19774307 

  53. 53. Mehrholz J Pohl M Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices J Rehabil Med 2012 44 193 199 10.2340/16501977-0943 22378603 

  54. 54. Hesse S Sarkodie-Gyan T Uhlenbrock D Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects Biomedizinische Technik Biomed Eng 1999 44 194 201 10.1515/bmte.1999.44.7-8.194 

  55. 55. Yang JF Musselman KE Training to achieve over ground walking after spinal cord injury: a review of who, what, when, and how J Spinal Cord Med 2012 35 293 304 10.1179/2045772312Y.0000000036 23031166 

  56. 56. Dobkin BH Duncan PW Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair 2012 26 308 317 10.1177/1545968312439687 22412172 

  57. 57. Stevenson AJ Mrachacz-Kersting N van Asseldonk E Turner DL Spaich EG Spinal plasticity in robot-mediated therapy for the lower limbs J Neuroeng Rehab 2015 12 81 10.1186/s12984-015-0073-x 

  58. 58. Knikou M Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury Exp Brain Res 2013 228 279 296 10.1007/s00221-013-3560-y 23708757 

  59. 59. Wu M Hornby TG Landry JM Roth H Schmit BD A cable-driven locomotor training system for restoration of gait in human SCI Gait Posture 2011 33 256 260 10.1016/j.gaitpost.2010.11.016 21232961 

  60. 60. Wu M Landry JM Schmit BD Hornby TG Yen SC Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study Arch Phys Med Rehabil 2012 93 782 789 10.1016/j.apmr.2011.12.018 22459697 

  61. 61. Lam T Pauhl K Ferguson A Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study J Rehabil Res Dev 2015 52 113 129 10.1682/JRRD.2014.03.0090 26230667 

  62. 62. Drew T Jiang W Widajewicz W Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat Brain Res Brain Res Rev 2002 40 178 191 10.1016/S0165-0173(02)00200-X 12589916 

  63. 63. Evans D Hierarchy of evidence: a framework for ranking evidence evaluating healthcare interventions J Clin Nurs 2003 12 77 84 10.1046/j.1365-2702.2003.00662.x 12519253 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로