$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Efficient surface functionalization of vertically-aligned carbon nanotube arrays using an atmospheric pressure plasma jet system

Fullerenes, nanotubes, and carbon nanostructures, v.26 no.2, 2018년, pp.116 - 122  

Lee, Byeong-Joo (Department of Advanced Materials Science and Engineering, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea) ,  Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

We demonstrate the facile and efficient surface functionalization of vertically-aligned carbon nanotube (VCNT) arrays using an atmospheric pressure plasma jet (APPJ) system. The VCNT arrays were synthesized on Fe-deposited SiO2 wafers using an acetylene carbon source by thermal chemical vapor deposi...

참고문헌 (28)

  1. Iijima, Sumio. Helical microtubules of graphitic carbon. Nature, vol.354, no.6348, 56-58.

  2. Shulaker, Max M., Hills, Gage, Patil, Nishant, Wei, Hai, Chen, Hong-Yu, Wong, H.-S. Philip, Mitra, Subhasish. Carbon nanotube computer. Nature, vol.501, no.7468, 526-530.

  3. Sun, Hao, You, Xiao, Deng, Jue, Chen, Xuli, Yang, Zhibin, Ren, Jing, Peng, Huisheng. Novel Graphene/Carbon Nanotube Composite Fibers for Efficient Wire‐Shaped Miniature Energy Devices. Advanced materials, vol.26, no.18, 2868-2873.

  4. Salvatierra, Rodrigo V., Cava, Carlos E., Roman, Lucimara S., Zarbin, Aldo J. G.. ITO‐Free and Flexible Organic Photovoltaic Device Based on High Transparent and Conductive Polyaniline/Carbon Nanotube Thin Films. Advanced functional materials, vol.23, no.12, 1490-1499.

  5. Amjadi, Morteza, Yoon, Yong Jin, Park, Inkyu. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology, vol.26, no.37, 375501-.

  6. Castillejos, E., Bachiller-Baeza, B., Perez-Cadenas, M., Gallegos-Suarez, E., Rodriguez-Ramos, I., Guerrero-Ruiz, A., Tamargo-Martinez, K., Martinez-Alonso, A., Tascon, J.M.D.. Structural and surface modifications of carbon nanotubes when submitted to high temperature annealing treatments. Journal of alloys and compounds, vol.536, no.suppl1, S460-S463.

  7. Zeng, Baoqing, Xiong, Guangyong, Chen, Shuo, Wang, W. Z., Wang, D. Z., Ren, Z. F.. Enhancement of field emission of aligned carbon nanotubes by thermal oxidation. Applied physics letters, vol.89, no.22, 223119-.

  8. Derycke, V., Martel, R., Appenzeller, J., Avouris, Ph.. Controlling doping and carrier injection in carbon nanotube transistors. Applied physics letters, vol.80, no.15, 2773-2775.

  9. Lim, S.T., Cho, J.H., Huh, S.R., Jeong, G.H., Kim, G.H.. Mechanism of cone-shaped carbon nanotube bundle formation by plasma treatment. Carbon, vol.48, no.13, 3864-3873.

  10. Jiao, Liying, Zhang, Li, Wang, Xinran, Diankov, Georgi, Dai, Hongjie. Narrow graphene nanoribbons from carbon nanotubes. Nature, vol.458, no.7240, 877-880.

  11. Chen, Changlun, Liang, Bo, Ogino, Akihisa, Wang, Xiangke, Nagatsu, Masaaki. Oxygen Functionalization of Multiwall Carbon Nanotubes by Microwave-Excited Surface-Wave Plasma Treatment. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.113, no.18, 7659-7665.

  12. Chen, C., Liang, B., Lu, D., Ogino, A., Wang, X., Nagatsu, M.. Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon, vol.48, no.4, 939-948.

  13. Shin, E.C., Jeong, G.H.. Plasma functionalization of as grown carbon nanotubes for efficient dispersion. Thin solid films, vol.519, no.20, 7129-7132.

  14. Lu, X., Xiong, Q., Xiong, Z., Hu, J., Zhou, F., Gong, W., Xian, Y., Zou, C., Tang, Z., Jiang, Z., Pan, Y.. Propagation of an atmospheric pressure plasma plume. Journal of applied physics, vol.105, no.4, 043304-.

  15. Lee, S., Peng, J.W., Liu, C.H.. Raman study of carbon nanotube purification using atmospheric pressure plasma. Carbon, vol.46, no.15, 2124-2132.

  16. Moon, Se Youn, Choe, W., Kang, B. K.. A uniform glow discharge plasma source at atmospheric pressure. Applied physics letters, vol.84, no.2, 188-190.

  17. Wang, Dacheng, Zhao, Di, Feng, Kecheng, Zhang, Xianhui, Liu, Dongping, Yang, Size. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications. Applied physics letters, vol.98, no.16, 161501-.

  18. van Gils, C A J, Hofmann, S, Boekema, B K H L, Brandenburg, R, Bruggeman, P J. Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. Journal of physics. D, applied physics, vol.46, no.17, 175203-.

  19. De Geyter, N., Sarani, A., Jacobs, T., Nikiforov, A. Yu., Desmet, T., Dubruel, P.. Surface Modification of Poly-ε-Caprolactone with an Atmospheric Pressure Plasma Jet. Plasma chemistry and plasma processing, vol.33, no.1, 165-175.

  20. Garcia-Torres, J., Sylla, D., Molina, L., Crespo, E., Mota, J., Bautista, L.. Surface modification of cellulosic substrates via atmospheric pressure plasma polymerization of acrylic acid: Structure and properties. Applied surface science, vol.305, 292-300.

  21. Kim, M.C., Yang, S.H., Boo, J.-H., Han, J.G.. Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics. Surface & coatings technology, vol.174, 839-844.

  22. Shon, Won‐Jun, Chung, Shin Hye, Kim, Hong‐Kyun, Han, Geum‐Jun, Cho, Byeong‐Hoon, Park, Young‐Seok. Peri‐implant bone formation of non‐thermal atmospheric pressure plasma–treated zirconia implants with different surface roughness in rabbit tibiae. Clinical oral implants research, vol.25, no.5, 573-579.

  23. Farhat, S., Gilliam, M., Rabago-Smith, M., Baran, C., Walter, N., Zand, A.. Polymer coatings for biomedical applications using atmospheric pressure plasma. Surface & coatings technology, vol.241, 123-129.

  24. Lee, Byeong-Joo, Kim, Jin-Ju, Shin, Eui-Chul, Jeong, Goo-Hwan. Growth optimization of double-walled carbon nanotubes yielding precisely designed structures. Metals and materials international, vol.17, no.2, 309-314.

  25. Lee, B.J., Shin, E.C., Jeong, G.H.. Structure modifications of vertically grown carbon nanotubes by plasma ion bombardment. Vacuum, vol.84, no.12, 1398-1401.

  26. Ishaq, A., Ni, Z., Yan, L., Gong, J., Zhu, D.. Constructing carbon nanotube junctions by Ar ion beam irradiation. Radiation physics and chemistry, vol.79, no.6, 687-691.

  27. Xiao, K., Liu, Y., Hu, P., Yu, G., Sun, Y., Zhu, D.. n-Type Field-Effect Transistors Made of an Individual Nitrogen-Doped Multiwalled Carbon Nanotube. Journal of the American Chemical Society, vol.127, no.24, 8614-8617.

  28. Ayala, P., Arenal, R., Rummeli, M., Rubio, A., Pichler, T.. The doping of carbon nanotubes with nitrogen and their potential applications. Carbon, vol.48, no.3, 575-586.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로