$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Direct reference‐free measurement of displacements for railroad bridge management 원문보기

Structural control and health monitoring, v.25 no.10, 2018년, pp.e2241 -   

Liu, Bideng (State Environmental Protection Engineering Center for City Noise and Vibration Control, Beijing Municipal Institute of Labour Protection, Beijing, China) ,  Ozdagli, Ali I. (Department of Civil Engineering, University of New Mexico, Albuquerque, New Mexico, USA) ,  Moreu, Fernando (Department of Civil Engineering, University of New Mexico, Albuquerque, New Mexico, USA)

Abstract AI-Helper 아이콘AI-Helper

SummaryToday, railroads carry 40% of the total freight tonnage in North America, and this demand will double in the next 20 years. Half of the North American railroad bridges are over 100 years old. Measuring bridge displacements under train loading can assist in quantifying the safety and reliabili...

Keyword

참고문헌 (46)

  1. Freight Rail Today . Available online: https://www.fra.dot.gov/Page/P0362 

  2. National Rail Plan Progress Report . Available online : https://www.fra.dot.gov/eLib/Details/L02696 

  3. Moreu F , Li J , Jo H , et al. Reference‐free displacements for condition assessment of timber railroad bridges . Journal of Bridge Engineering . 2015 ; 21 ( 2 ): 04015052 . 

  4. Total Annual Spending 2015 Data. Available online: www.aar.org/Documents/AARAnnual Spending_2016 Update_7.25.16.pdf 

  5. Moreu F , LaFave JM . Current Research Topics: Railroad Bridges and Structural Engineering. Newmark Structural Engineering Laboratory . University of Illinois at Urbana‐Champaign ; 2012 . 

  6. Wipf TJ , Ritter MA , and Wood DL . Evaluation and field load testing of timber railroad bridge. Fifth International Bridge Engineering Conference, TRR Number 1696, Washington, D.C., USA , 2000 . Paper No. 5B0112, Pp. 323 – 333 , 

  7. Foutch DA . National Workshop on Railway Bridge Research Needs: Summary Report . Chicago, Illinois : AAR Technical Center ; July 1989 Report No. R‐710. 

  8. Moreu F , Jo H , Li J , et al. Dynamic assessment of timber railroad bridges using displacements . J Bridg Eng . 2015 ; 20 ( 10 ): 04014114 . 

  9. Hou X , Yang X , Huang Q . Using inclinometers to measure bridge deflection . J Bridg Eng . 2005 ; 10 ( 5 ): 564 ‐ 569 . 

  10. Yu Y , Liu H , Li D , Mao X , Ou J . Bridge deflection measurement using wireless mems inclination sensor systems . Int J Smart Sens Intell Syst . 2013 ; 6 ( 1 ): 38 ‐ 57 . 

  11. Zhang W , Sun LM , Sun SW . Bridge‐deflection estimation through inclinometer data considering structural damages . J Bridge Eng . 2016 : 04016117 . 

  12. Olaszek P . Investigation of the dynamic characteristic of bridge structures using a computer vision method . Measurement . 1999 ; 25 ( 3 ): 227 ‐ 236 , ISSN 0263‐2241. Available online: https://doi.org/10.1016/S0263‐2241(99)00006‐8. accessed on 24 May 2017 

  13. Lee JJ , Shinozuka M . Real‐time displacement measurement of a flexible bridge using digital image processing techniques . Exp Mech . 2006 ; 46 ( 1 ): 105 ‐ 114 . 

  14. Ribeiro D , Calçada R , Ferreira J , Martins T . Non‐contact measurement of the dynamic displacement of railway bridges using an advanced video‐based system . Eng Struct . 2014 ; 75 : 164 ‐ 180 , ISSN 0141‐0296. Available online: https://doi.org/10.1016/j.engstruct.2014.04.051 

  15. Fukuda Y , Feng MQ , Shinozuka M . Cost‐506 effective vision‐based system for monitoring dynamic response of civil engineering structures . Struct Control Health Monit . 2010 ; 17 ( 8 ): 918 ‐ 936 . https://doi.org/10.1002/stc.360 

  16. Feng M , Fukuda Y , Feng D , Mizuta M . Nontarget vision sensor for remote measurement of bridge dynamic response . J Bridge Eng . 2015 , https://doi.org/10.1061/(ASCE)BE.1943‐5592.0000747; 20 ( 12 ): 04015023 . 

  17. Yoon H , Elanwar H , Choi H , Golparvar‐Fard M , Spencer BF . Target‐free approach for vision‐based structural system identification using consumer‐grade cameras . Struct Control Health Monit . 2016 ; 23 ( 12 ): 1405 ‐ 1416 . 

  18. Rice JA , Changzhi L , Changzhan G , and Hernandez JC. A wireless multifunctional radar‐based displacement sensor for structural health monitoring . Sens Smart Struct Tech Civ, Mech Aerosp Sys , 2011 . Edited by Tomizuka , Masayoshi . Proceedings of the SPIE, Volume 7981 , pp. 79810K– 79810K ‐ 11 , https://doi.org/10.1117/12.879243. 

  19. Nassif H , Gindy M , Davis J . Comparison of laser Doppler vibrometer with contact sensors for monitoring of bridge deflection and vibration . NDT & E International . 2005 ; 39 ( 3 ): 213 ‐ 218 . 

  20. Zhao X , Liu H , Yu Y , et al. Bridge displacement monitoring method based on laser projection‐sensing technology . Sensors . 2015 ; 15 ( 4 ): 8444 ‐ 8463 . 

  21. Koo KY , Brownjohn JMW , List DI , Cole R . Structural health monitoring of the Tamar suspension bridge . Struct Control Health Monit . 2013 ; 20 ( 4 ): 609 ‐ 625 . https://doi.org/10.1002/stc.1481 

  22. Psimoulis P , Stiros S . Measuring deflections of a short‐span railway bridge using a robotic total station (RTS) . J Bridge Eng . 2013 ; 18 ( 2 ): 182 ‐ 185 . 

  23. Nickitopoulou A , Protopsalti K , Stiros S . Monitoring dynamic and quasi‐static deformations of large flexible engineering structures with GPS: accuracy, limitations and promises . Eng Struct . 2006 ; 28 ( 10 ): 1471 ‐ 1482 . 

  24. Watson C , Watson T , Coleman R . Structural monitoring of cable‐stayed bridge: analysis of GPS versus modeled deflections . J Surv Eng . 2007 ; 133 ( 1 ): 23 ‐ 28 . 

  25. Boore DM . Analog‐to‐digital conversion as a source of drifts in displacements derived from digital recordings of ground acceleration . BullSeismSocAm . 2003 ; 93 ( 5 ): 2017 ‐ 2024 . 

  26. Yang J , Li JB , Lin G . A simple approach to integration of acceleration data for dynamic soil–structure interaction analysis . Soil Dyna Earthquake Eng . 2005 ; 26 ( 8 ): 725 ‐ 734 . 

  27. Gindy M , Vaccaro R , Nassif H , Velde J . A state‐space approach for deriving bridge displacement from acceleration . Comput Aided Civ Inf Eng . 2008 ; 23 ( 4 ): 281 ‐ 290 . 

  28. Hester D , Brownjohn J , Bocian M , Xu Y . Low cost bridge load test: calculating bridge displacement from acceleration for load assessment calculations . Eng Struct . 2017 ; 143 : 358 ‐ 374 . 

  29. Park K‐T , Kim S‐H , Park H‐S , Lee K‐W . The determination of bridge displacement using measured acceleration . Eng Struct . 2005 ; 27 ( 3 ): 371 ‐ 378 . 

  30. Cho S , Park JW , Palanisamy RP , Sim SH . Reference‐free displacement estimation of bridges using Kalman filter‐based multimetric data fusion . J Sens . 2016 ; 2016 : 1 ‐ 9 . 

  31. Lee HS , Hong YH , Park HW . Design of an FIR filter for the displacement reconstruction using measured acceleration in low‐frequency dominant structures . Int J Numer Methods Eng . 2010 Apr 23; 82 ( 4 ): 403 ‐ 434 . 

  32. Moreu F , Kim RE , Spencer BF . Railroad bridge monitoring using wireless smart sensors . Struct Control Health Monit . 2017 ; 24 ( 2 ). 

  33. Gomez JA , Ozdagli AI , Moreu F . Application of Low‐Cost Sensors for Estimation of Reference‐Free Displacements Under Dynamic Loading for Railroad Bridges Safety . In: ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Stowe, Vermont, USA, 28–30 ; September 2016 . 

  34. Ozdagli , A.I. , Moreu , F. , Gomez , J.A. , Garp , P. and Vemuganti , S . Data Fusion of Accelerometers with Inclinometers for Reference‐free High Fidelity Displacement Estimation . 8th European Workshop On structural health monitoring (EWSHM 2016), Bilbao, Spain, 5 – 8 July 2016 . 

  35. Clinton JF , Heaton TH . Potential advantages of a strong‐motion velocity meter over a strong‐motion accelerometer . Seismol Res Lett . 2002 ; 73 ( 3 ): 332 ‐ 342 . 

  36. Xuezhi Y , Leshan M , Puqiang Y . Novel inertial extremely low frequency transducer . J Tsinghua Univ: Sci Tech . 1998 ; 38 ( 11 ): 22 ‐ 36 . 

  37. Shuanglan C , Jun L , Hongyuan Y , et al. Low frequency expansion technologies applied in deep seismic exploration geophones . Prog Geophys . 2012 ; 27 ( 5 ): 1904 ‐ 1911 . 

  38. Xueshan Y , Feng G , Xingmin H . Low‐frequency characteristics extension for vibration sensors . Earthq Eng Eng Vib . 2004 ; 3 ( 1 ): 139 ‐ 146 . 

  39. Qinglei C , Wei H , Xianlong H . A vibration‐measuring system based on passive servo vibration pickups . J Vib Shock . 2009 ; 4 : 039 . 

  40. Qinglei C , Xueshan Y , Shuaiku S . Passive servo feedback multi output low frequency vibration sensor . Chin J Sci Instrum . 2017 ; 38 ( 1 ): 105 ‐ 111 . 

  41. Li D , Qiuhai L . Analysis of Experiments of Engineering Vibration . Beijing, China : Tsinghua University Press ; 2004 . 

  42. Li X , De‐Yi Z , Wei‐Ming Y , Yan‐Jiang C , Wei‐Chau X . Shake‐table test for a typical curved bridge: wave passage and local site effects . J Bridge Eng . 2015 , https://doi.org/10.1061/(ASCE)BE.1943‐5592.0000643; 20 ( 2 ): 04014061 . 

  43. Junfang H , Rongli L , Hongbai B . Independent modal control method for the modal interval parameter model of the active isolation platform . J Vib Eng . 2011 ; 24 ( 6 ): 670 ‐ 675 . 

  44. Hongbiao L , Guo X . Study on shaking table collapse tests of typical masonry structure in meizoseismal area . Chin Civil Eng J . 2012 ; 45 ( 2 ): 18 ‐ 28 . 

  45. Quanser . Quanser shake table Data Sheet . 2006 (Retrieved from http://www.quanser.com/Products/Docs/3985/Shake_Tables_and_Smart_Structures_System_Specifications_v1.6.pdf.) 

  46. Xinquan G . Applied Mathematical Statistics . Beijing, China : China Railway Publishing House ; 1995 . 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로