최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Structural control and health monitoring, v.25 no.10, 2018년, pp.e2241 -
Liu, Bideng (State Environmental Protection Engineering Center for City Noise and Vibration Control, Beijing Municipal Institute of Labour Protection, Beijing, China) , Ozdagli, Ali I. (Department of Civil Engineering, University of New Mexico, Albuquerque, New Mexico, USA) , Moreu, Fernando (Department of Civil Engineering, University of New Mexico, Albuquerque, New Mexico, USA)
SummaryToday, railroads carry 40% of the total freight tonnage in North America, and this demand will double in the next 20 years. Half of the North American railroad bridges are over 100 years old. Measuring bridge displacements under train loading can assist in quantifying the safety and reliabili...
Freight Rail Today . Available online: https://www.fra.dot.gov/Page/P0362
National Rail Plan Progress Report . Available online : https://www.fra.dot.gov/eLib/Details/L02696
Moreu F , Li J , Jo H , et al. Reference‐free displacements for condition assessment of timber railroad bridges . Journal of Bridge Engineering . 2015 ; 21 ( 2 ): 04015052 .
Total Annual Spending 2015 Data. Available online: www.aar.org/Documents/AARAnnual Spending_2016 Update_7.25.16.pdf
Moreu F , LaFave JM . Current Research Topics: Railroad Bridges and Structural Engineering. Newmark Structural Engineering Laboratory . University of Illinois at Urbana‐Champaign ; 2012 .
Wipf TJ , Ritter MA , and Wood DL . Evaluation and field load testing of timber railroad bridge. Fifth International Bridge Engineering Conference, TRR Number 1696, Washington, D.C., USA , 2000 . Paper No. 5B0112, Pp. 323 – 333 ,
Foutch DA . National Workshop on Railway Bridge Research Needs: Summary Report . Chicago, Illinois : AAR Technical Center ; July 1989 Report No. R‐710.
Moreu F , Jo H , Li J , et al. Dynamic assessment of timber railroad bridges using displacements . J Bridg Eng . 2015 ; 20 ( 10 ): 04014114 .
Hou X , Yang X , Huang Q . Using inclinometers to measure bridge deflection . J Bridg Eng . 2005 ; 10 ( 5 ): 564 ‐ 569 .
Yu Y , Liu H , Li D , Mao X , Ou J . Bridge deflection measurement using wireless mems inclination sensor systems . Int J Smart Sens Intell Syst . 2013 ; 6 ( 1 ): 38 ‐ 57 .
Zhang W , Sun LM , Sun SW . Bridge‐deflection estimation through inclinometer data considering structural damages . J Bridge Eng . 2016 : 04016117 .
Olaszek P . Investigation of the dynamic characteristic of bridge structures using a computer vision method . Measurement . 1999 ; 25 ( 3 ): 227 ‐ 236 , ISSN 0263‐2241. Available online: https://doi.org/10.1016/S0263‐2241(99)00006‐8. accessed on 24 May 2017
Lee JJ , Shinozuka M . Real‐time displacement measurement of a flexible bridge using digital image processing techniques . Exp Mech . 2006 ; 46 ( 1 ): 105 ‐ 114 .
Ribeiro D , Calçada R , Ferreira J , Martins T . Non‐contact measurement of the dynamic displacement of railway bridges using an advanced video‐based system . Eng Struct . 2014 ; 75 : 164 ‐ 180 , ISSN 0141‐0296. Available online: https://doi.org/10.1016/j.engstruct.2014.04.051
Fukuda Y , Feng MQ , Shinozuka M . Cost‐506 effective vision‐based system for monitoring dynamic response of civil engineering structures . Struct Control Health Monit . 2010 ; 17 ( 8 ): 918 ‐ 936 . https://doi.org/10.1002/stc.360
Feng M , Fukuda Y , Feng D , Mizuta M . Nontarget vision sensor for remote measurement of bridge dynamic response . J Bridge Eng . 2015 , https://doi.org/10.1061/(ASCE)BE.1943‐5592.0000747; 20 ( 12 ): 04015023 .
Yoon H , Elanwar H , Choi H , Golparvar‐Fard M , Spencer BF . Target‐free approach for vision‐based structural system identification using consumer‐grade cameras . Struct Control Health Monit . 2016 ; 23 ( 12 ): 1405 ‐ 1416 .
Rice JA , Changzhi L , Changzhan G , and Hernandez JC. A wireless multifunctional radar‐based displacement sensor for structural health monitoring . Sens Smart Struct Tech Civ, Mech Aerosp Sys , 2011 . Edited by Tomizuka , Masayoshi . Proceedings of the SPIE, Volume 7981 , pp. 79810K– 79810K ‐ 11 , https://doi.org/10.1117/12.879243.
Nassif H , Gindy M , Davis J . Comparison of laser Doppler vibrometer with contact sensors for monitoring of bridge deflection and vibration . NDT & E International . 2005 ; 39 ( 3 ): 213 ‐ 218 .
Zhao X , Liu H , Yu Y , et al. Bridge displacement monitoring method based on laser projection‐sensing technology . Sensors . 2015 ; 15 ( 4 ): 8444 ‐ 8463 .
Koo KY , Brownjohn JMW , List DI , Cole R . Structural health monitoring of the Tamar suspension bridge . Struct Control Health Monit . 2013 ; 20 ( 4 ): 609 ‐ 625 . https://doi.org/10.1002/stc.1481
Psimoulis P , Stiros S . Measuring deflections of a short‐span railway bridge using a robotic total station (RTS) . J Bridge Eng . 2013 ; 18 ( 2 ): 182 ‐ 185 .
Nickitopoulou A , Protopsalti K , Stiros S . Monitoring dynamic and quasi‐static deformations of large flexible engineering structures with GPS: accuracy, limitations and promises . Eng Struct . 2006 ; 28 ( 10 ): 1471 ‐ 1482 .
Watson C , Watson T , Coleman R . Structural monitoring of cable‐stayed bridge: analysis of GPS versus modeled deflections . J Surv Eng . 2007 ; 133 ( 1 ): 23 ‐ 28 .
Boore DM . Analog‐to‐digital conversion as a source of drifts in displacements derived from digital recordings of ground acceleration . BullSeismSocAm . 2003 ; 93 ( 5 ): 2017 ‐ 2024 .
Yang J , Li JB , Lin G . A simple approach to integration of acceleration data for dynamic soil–structure interaction analysis . Soil Dyna Earthquake Eng . 2005 ; 26 ( 8 ): 725 ‐ 734 .
Gindy M , Vaccaro R , Nassif H , Velde J . A state‐space approach for deriving bridge displacement from acceleration . Comput Aided Civ Inf Eng . 2008 ; 23 ( 4 ): 281 ‐ 290 .
Hester D , Brownjohn J , Bocian M , Xu Y . Low cost bridge load test: calculating bridge displacement from acceleration for load assessment calculations . Eng Struct . 2017 ; 143 : 358 ‐ 374 .
Park K‐T , Kim S‐H , Park H‐S , Lee K‐W . The determination of bridge displacement using measured acceleration . Eng Struct . 2005 ; 27 ( 3 ): 371 ‐ 378 .
Cho S , Park JW , Palanisamy RP , Sim SH . Reference‐free displacement estimation of bridges using Kalman filter‐based multimetric data fusion . J Sens . 2016 ; 2016 : 1 ‐ 9 .
Lee HS , Hong YH , Park HW . Design of an FIR filter for the displacement reconstruction using measured acceleration in low‐frequency dominant structures . Int J Numer Methods Eng . 2010 Apr 23; 82 ( 4 ): 403 ‐ 434 .
Moreu F , Kim RE , Spencer BF . Railroad bridge monitoring using wireless smart sensors . Struct Control Health Monit . 2017 ; 24 ( 2 ).
Gomez JA , Ozdagli AI , Moreu F . Application of Low‐Cost Sensors for Estimation of Reference‐Free Displacements Under Dynamic Loading for Railroad Bridges Safety . In: ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Stowe, Vermont, USA, 28–30 ; September 2016 .
Ozdagli , A.I. , Moreu , F. , Gomez , J.A. , Garp , P. and Vemuganti , S . Data Fusion of Accelerometers with Inclinometers for Reference‐free High Fidelity Displacement Estimation . 8th European Workshop On structural health monitoring (EWSHM 2016), Bilbao, Spain, 5 – 8 July 2016 .
Clinton JF , Heaton TH . Potential advantages of a strong‐motion velocity meter over a strong‐motion accelerometer . Seismol Res Lett . 2002 ; 73 ( 3 ): 332 ‐ 342 .
Xuezhi Y , Leshan M , Puqiang Y . Novel inertial extremely low frequency transducer . J Tsinghua Univ: Sci Tech . 1998 ; 38 ( 11 ): 22 ‐ 36 .
Shuanglan C , Jun L , Hongyuan Y , et al. Low frequency expansion technologies applied in deep seismic exploration geophones . Prog Geophys . 2012 ; 27 ( 5 ): 1904 ‐ 1911 .
Xueshan Y , Feng G , Xingmin H . Low‐frequency characteristics extension for vibration sensors . Earthq Eng Eng Vib . 2004 ; 3 ( 1 ): 139 ‐ 146 .
Qinglei C , Wei H , Xianlong H . A vibration‐measuring system based on passive servo vibration pickups . J Vib Shock . 2009 ; 4 : 039 .
Qinglei C , Xueshan Y , Shuaiku S . Passive servo feedback multi output low frequency vibration sensor . Chin J Sci Instrum . 2017 ; 38 ( 1 ): 105 ‐ 111 .
Li D , Qiuhai L . Analysis of Experiments of Engineering Vibration . Beijing, China : Tsinghua University Press ; 2004 .
Li X , De‐Yi Z , Wei‐Ming Y , Yan‐Jiang C , Wei‐Chau X . Shake‐table test for a typical curved bridge: wave passage and local site effects . J Bridge Eng . 2015 , https://doi.org/10.1061/(ASCE)BE.1943‐5592.0000643; 20 ( 2 ): 04014061 .
Junfang H , Rongli L , Hongbai B . Independent modal control method for the modal interval parameter model of the active isolation platform . J Vib Eng . 2011 ; 24 ( 6 ): 670 ‐ 675 .
Hongbiao L , Guo X . Study on shaking table collapse tests of typical masonry structure in meizoseismal area . Chin Civil Eng J . 2012 ; 45 ( 2 ): 18 ‐ 28 .
Quanser . Quanser shake table Data Sheet . 2006 (Retrieved from http://www.quanser.com/Products/Docs/3985/Shake_Tables_and_Smart_Structures_System_Specifications_v1.6.pdf.)
Xinquan G . Applied Mathematical Statistics . Beijing, China : China Railway Publishing House ; 1995 .
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.