$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel 원문보기

Materials, v.10 no.7, 2017년, pp.713 -   

Kim, Ki-Tae ,  Lee, Jung-Hee ,  Kim, Young-Sik

Abstract AI-Helper 아이콘AI-Helper

Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensiti...

주제어

참고문헌 (45)

  1. 1. Dutta R.S. De P.K. Gadiyar H.S. The sensitization and stress corrosion cracking of nitrogen-containing stainless steels Corros. Sci. 1993 34 51 60 10.1016/0010-938X(93)90258-I 

  2. 2. Nishimoto K. Ogawa K. Corrosion properties in weldments of stainless steels (1). Metallurgical factors affecting corrosion properties Weld. Int. 1999 13 845 854 10.1080/09507119909452061 

  3. 3. Gooch T.G. Corrosion behavior of welded stainless steel Weld. J. Incl. Weld. Res. Suppl. 1996 75 135s 154s 

  4. 4. Lee J.H. Kim K.T. Poun Y.S. Kim Y.S. Intergranular corrosion mechanism of slightly-sensitized and UNSM-treated 316L stainless steel Corros. Sci. Tech. 2016 15 226 236 10.14773/cst.2016.15.5.226 

  5. 5. Kim Y.S. Energy Materials and its Degradation Hanti-media Seoul, Korea 2013 162 163 

  6. 6. Fontana M.G. Corrosion Engineering McGraw-Hill Book Company New York, NY, USA 1987 

  7. 7. Aydoğdu G.H. Aydinol M.K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel Corros. Sci. 2006 48 3565 3583 10.1016/j.corsci.2006.01.003 

  8. 8. Sahlaoui H. Makhlouf K. Sidhom H. Philibert J. Effects of ageing conditions on the precipitates evolution, chromium depletion and intergranular corrosion susceptibility of AISI 316L: Experimental and modeling results Mater. Sci. Eng. A 2004 372 98 108 10.1016/j.msea.2003.12.017 

  9. 9. Ogwu A.A. Davies T.J. Improving the sensitisation resistance of ferritic stainless steels Scr. Mater. 1997 37 259 263 10.1016/S1359-6462(97)00125-5 

  10. 10. Pardo A. Merino M.C. Coy A.E. Viejo F. Carboneras M. Arrabal R. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels Acta Mater. 2007 55 2239 22551 10.1016/j.actamat.2006.11.021 

  11. 11. Hall E.L. Briant C.L. Chromium depletion in the vicinity of carbides in sensitized austenitic stainless steels Metall. Mater. Trans. A 1984 15 793 811 10.1007/BF02644554 

  12. 12. Gates J.D. Jago R.A. Effect of nitrogen contamination on intergranular corrosion of stabilized ferritic stainless steels Mater. Sci. Technol. 1987 3 450 454 10.1179/mst.1987.3.6.450 

  13. 13. Amunda M.O.H. Mridha S. An overview of sensitization dynamics in ferritic stainless steel welds Int. J. Corros. 2011 2011 305793 

  14. 14. Rashid M.W.A. Gakim M. Rosli Z.M. Azam M.A. Formation of Cr 23 C 6 during the sensitization of AISI 304 stainless steel and its effect to pitting corrosion Int. J. Electrochem. Sci. 2012 7 9465 9477 

  15. 15. Kim J.K. Kim Y.H. Lee B.H. Kim K.Y. New findings on intergranular corrosion mechanism of stabilized stainless steels Electrochim. Acta 2011 56 1701 1710 10.1016/j.electacta.2010.08.042 

  16. 16. Fang Z. Wu Y. Zhu R. Stress corrosion cracking of type 304 stainless steel weldments in the active state Corrosion 1994 50 171 175 10.5006/1.3293508 

  17. 17. Krishnan K.N. Prasad R.K. Effect of microstructure on stress corrosion cracking behavior of austenitic stainless steel weld metals Mater. Sci. Eng. A 1991 142 79 85 10.1016/0921-5093(91)90756-D 

  18. 18. Lu B.T. Chen Z.K. Luo J.L. Patchett B.M. Xu Z.H. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel Electrochim. Acta 2005 50 1391 1403 10.1016/j.electacta.2004.08.036 

  19. 19. Clauer A.H. Shock Waves and High Strain Rate Phenomena in Metals Plenum Press New York, NY, USA 1981 675 701 

  20. 20. Sano Y. Mukai N. Okasaki K. Obata M. Residual stress improvement in metal surface by underwater laser irradiation Nucl. Instrum. Methods Phys. Res. Sect. B 1997 121 432 436 10.1016/S0168-583X(96)00551-4 

  21. 21. Peyre P. Fabbro R. Merrien P. Lieurade H.P. Laser shock processing of aluminium alloys. Application to high cycle fatigue behavior Mater. Sci. Eng. A 1996 210 102 113 10.1016/0921-5093(95)10084-9 

  22. 22. Peyre P. Scherpereel X. Berthe L. Carboni C. Fabbro R. Béranger G. Lemaitre C. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance Mater. Sci. Eng. A 2000 280 294 302 10.1016/S0921-5093(99)00698-X 

  23. 23. Azar V. Hashemi B. Yazdi M.R. The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer’s solution Surf. Coat. Technol. 2010 204 3546 3551 10.1016/j.surfcoat.2010.04.015 

  24. 24. Liu G. Wang S.C. Lou X.F. Lu J. Lu K. Low carbon steel with nanostructured surface layer induced by high-energy shot peening Scr. Mater. 2001 44 1791 1795 10.1016/S1359-6462(01)00738-2 

  25. 25. Sanjurjo P. Rodriguez C. Pariente I.F. Belzunce F.J. Canteli A.F. The influence of shot peening on the fatigue behaviour of duplex stainless steels Scri. Mater. 2010 2 1539 1546 10.1016/j.proeng.2010.03.166 

  26. 26. Peyre P. Braham C. Ledion J. Berthe L. Fabbro R. Corrosion reactivity of laser-peened steel surfaces J. Mater. Eng. Perform. 2000 9 656 662 10.1361/105994900770345520 

  27. 27. Trdan U. Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarization and ElS methods Corros. Sci. 2012 59 324 333 10.1016/j.corsci.2012.03.019 

  28. 28. EPRI 1025839, Materials Reliability Program: Technical Basis for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement (MRP-267, Revision 1) Electric Power Research Institute, Inc. Palo Alto, CA, USA 2012 

  29. 29. Gujba A.K. Medraj M. Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening Materials 2014 7 7925 7974 10.3390/ma7127925 

  30. 30. Telang A. Gill A.S. Tammana D. Wen X. Kumar M. Teysseyre S. Mannava S. R. Qian D. Vasudevan V.K. Surface grain boundary engineering of Alloy 600 for improved resistance to stress corrosion cracking Mater. Sci. Eng. A 2015 648 280 288 10.1016/j.msea.2015.09.074 

  31. 31. Lee H.S. Kim D.S. Jung J.S. Pyun Y.S. Shin K. Influence of peening on the corrosion properties of AISI 304 stainless steel Corros. Sci. 2009 51 2826 2830 10.1016/j.corsci.2009.08.008 

  32. 32. Wang T. Yu J. Dong B. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel Surf. Coat. Technol. 2006 200 4777 4781 10.1016/j.surfcoat.2005.04.046 

  33. 33. Ye W. Li Y. Wang F. Effects of nanocrystallization on the corrosion behavior of 309 stainless steel Electrochim. Acta 2006 51 4426 4432 

  34. 34. Takakuwa O. Soyama H. Effect of residual stress on the corrosion behavior of austenitic stainless steel Adv. Chem. Eng. Sci. 2015 5 62 71 10.4236/aces.2015.51007 

  35. 35. Domankova M. Kocsisova E. Pinke P. Slatkovsky I. The Microstructure Evolution and Its Effect on Corrosion Properties of 18Cr-12Ni-2,5Mo Steel Annealed at 500–900 °C Acta Polytech. Hung. 2014 11 125 137 

  36. 36. Wasnik D.N. Kain V. Samajdar I. Verlinden B. De P.K. Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries Acta Mater. 2002 50 4587 4601 10.1016/S1359-6454(02)00306-3 

  37. 37. Macdonald D.D. Point defect model for the passive state J. Electrochem. Soc. 1992 139 3434 3449 10.1149/1.2069096 

  38. 38. Lee J.H. Kim Y.S. Intergranular corrosion of 316L stainless steel by aging and UNSM (ultrasonic nano-crystal surface modification) treatment Corros. Sci. Technol. 2015 14 313 324 10.14773/cst.2015.14.6.313 

  39. 39. Sakashita M. Sato N. Bipolar fixed charged-induced passivity, in Passivity of Metals The Electrochemical Society Pennington, NJ, USA 1978 483 497 

  40. 40. Clayton C.R. Lu Y.C. A bipolar model of the passivity of stainless steel: The role of Mo addition J. Electrochem. Soc. 1986 133 2465 2473 10.1149/1.2108451 

  41. 41. Clayton C.R. Halada G.P. Kearns J.R. Passivity of high-nitrogen stainless alloys: The role of metal oxyanions and salt films Mater. Sci. Eng. A 1995 198 135 144 10.1016/0921-5093(95)80068-6 

  42. 42. Hoar T.P. Mears D.C. Rothwell G.P. The relationships between anodic passivity, brightening and pitting Corros. Sci. 1965 5 279 289 10.1016/S0010-938X(65)90614-1 

  43. 43. Macdonald D.D. Passivity-the key to our metals-based civilization Pure Appl. Chem. 1999 71 951 978 10.1351/pac199971060951 

  44. 44. Popov N.E. Corrosion Engineering Principles and Solved Problems Elsevier Waltham, MA, USA 2015 290 303 

  45. 45. Sedriks A.J. Corrosion of Stainless Steels 2nd ed. John Wiley & Sons, Inc. New York, NY, USA 1996 231 262 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로