$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The Influence of Ziegler-Natta and Metallocene Catalysts on Polyolefin Structure, Properties, and Processing Ability 원문보기

Materials, v.7 no.7, 2014년, pp.5069 - 5108  

Shamiri, Ahmad (Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia) ,  Chakrabarti, Mohammed H. (E-Mails: a.shamiri@um.edu.my (A.S.)) ,  Jahan, Shah (jakirkhanbd@gmail.com (S.J.)) ,  Hussain, Mohd Azlan (mohd_azlan@um.edu.my (M.A.H.)) ,  Kaminsky, Walter (Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia) ,  Aravind, Purushothaman V. (E-Mails: a.shamiri@um.edu.my (A.S.)) ,  Yehye, Wageeh A. (jakirkhanbd@gmail.com (S.J.))

Abstract AI-Helper 아이콘AI-Helper

50 years ago, Karl Ziegler and Giulio Natta were awarded the Nobel Prize for their discovery of the catalytic polymerization of ethylene and propylene using titanium compounds and aluminum-alkyls as co-catalysts. Polyolefins have grown to become one of the biggest of all produced polymers. New metal...

주제어

참고문헌 (219)

  1. 1. McNaught A.D. Wilkinson A. Compendium of Chemical Terminology IUPAC Nomenclature Books Series Blackwell Oxford, UK 1997 

  2. 2. Chung T.C.M. Functional Polyolefins for Energy Applications Macromolecules 2013 46 6671 6698 10.1021/ma401244t 

  3. 3. Mandal B.M. Fundamentals of Polymerization World Scientific Hackensack, NJ, USA 2013 

  4. 4. Albizzati E. Galimberti M. Catalysts for olefins polymerization Catal. Today 1998 41 415 421 

  5. 5. Ziegler K. Organometallic Chemistry Zeiss H. ACS Monograph 147 Reinhold Publishing Corp. New York, NY, USA 1960 Volume 194 

  6. 6. Gambarotta S. Vanadium-based Ziegler–Natta: Challenges, promises, problems Coord. Chem. Rev. 2003 237 229 243 10.1016/S0010-8545(02)00298-9 

  7. 7. Kaminsky W. New polymers by metallocene catalysis Macromol. Chem. Phys. 1996 197 3907 3945 10.1002/macp.1996.021971201 

  8. 8. Natta G. Kinetic studies of α-olefin polymerization J. Polym. Sci. 1959 34 21 48 10.1002/pol.1959.1203412703 

  9. 9. Claverie J.P. Schaper F. Ziegler-Natta catalysis: 50 years after the Nobel Prize MRS Bull. 2013 38 213 218 10.1557/mrs.2013.52 

  10. 10. Torres W. Donini J.C. Vlcek A.A. Lever A.B.P. Polymer Films with Tunable Surface Properties: Separation of an Oil-in-Water Emulsion at Poly(3-methylthiophene) Langmuir 1995 11 2920 2925 10.1021/la00008a013 

  11. 11. Fregonese D. Mortara S. Bresadola S. Ziegler-Natta MgCl 2 -supported catalysts: Relationship between titanium oxidation states distribution and activity in olefin polymerization J. Mol. Catal. A Chem. 2001 172 89 95 10.1016/S1381-1169(01)00128-5 

  12. 12. Kashiwa N.J. The discovery and progress of MgCl 2 -supported TiCl 4 catalysts Polym. Sci. A Polym. Chem. 2004 42 1 8 10.1002/pola.10962 

  13. 13. Natta G. Pino P. Mazzanti P. Regular linear head-to-tail polymerizates of certain unsaturated hydrocarbons and filaments comprising said polymerizates U.S. Patent 3,715,344 6 2 1973 

  14. 14. Kesti M.R. Coates G.W. Waymouth R.M. Homogeneous Ziegler-Natta polymerization of functionalized monomers catalyzed by cationic Group IV metallocenes J. Am. Chem. Soc. 1992 114 9679 9680 10.1021/ja00050a069 

  15. 15. Klimke K. Parkinson M. Piel C. Kaminsky W. Spiess H.W. Wilhelm M. Optimisation and Application of Polyolefin Branch Quantification by Melt-State 13 C-NMR Spectroscopy Macromol. Chem. Phys. 2006 207 382 395 10.1002/macp.200500422 

  16. 16. Kaminsky W. Funck A. Hähnsen H. New application for metallocene catalysts in olefin polymerization Dalton Trans. 2009 8803 8810 10.1039/b910542p 19826710 

  17. 17. Santos L.S. What do We Know about Reaction Mechanism? The Electrospray Ionization Mass Spectrometry Approach J. Braz. Chem. Soc. 2011 22 1827 1840 10.1590/S0103-50532011001000002 

  18. 18. Sagel E. Polyethylene Global Overview Available online: http://www.ptq.pemex.com/productosyservicios/eventosdescargas/Documents/Foro%20PEMEX%20Petroqu%C3%ADmica/2012/PEMEX%20PE.pdf (accessed on 25 April 2013) 

  19. 19. Shiga A. Theoretical study of heterogeneous Ziegler-Natta catalysts: A comparison between TiCl 3 catalysts and MgCl 2 supported catalysts by using paired interacting orbitals (PIO) analysis Macromol. Res. 2010 18 956 959 10.1007/s13233-010-1010-2 

  20. 20. Ahmad N. Mahmood K. Preparation and distribution measurements for polyethylene single-crystals for various type of sizes J. Chem. Soc. Pak. 1993 15 105 109 

  21. 21. Zhang W.-H. Chien S.W. Hor T.S.A. Recent advances in metal catalysts with hybrid ligands Coord. Chem. Rev. 2011 255 1991 2024 10.1016/j.ccr.2011.05.018 

  22. 22. Ghasem N.M. Ang W.L. Hussain M.A. Dynamics and stability of ethylene polymerization in multizone circulating reactors Korean J. Chem. Eng. 2009 26 603 611 10.1007/s11814-009-0102-1 

  23. 23. Cho K. Lee B.H. Hwang K.-M. Lee H. Choe S. Rheological and mechanical properties in polyethylene blends Polym. Eng. Sci. 1998 38 1969 1975 10.1002/pen.10366 

  24. 24. Aida T. Meijer E.W. Functional Supramolecular Polymers Science 2012 335 813 817 10.1126/science.1205962 22344437 

  25. 25. Korevaar P.A. George S.J. Markvoort A.J. Smulders M.M.J. Hilbers P.A.J. Schenning A.P.H.J. de Greef T.F.A. Meijer E.W. Pathway complexity in supramolecular polymerization Nature 2012 481 492 496 10.1038/nature10720 22258506 

  26. 26. Kitamaru R. Horii F. Murayama K. Phase Structure of Lamellar Crystalline Polyethylene by Solid-state High-Resolution 13 C-NMR: Detection of the Crystalline-Amorphous Interphase Macromolecules 1986 19 636 643 10.1021/ma00157a026 

  27. 27. Miroslav J. Roman C. Petr P. Morphology of Polyethylene with Regular Side Chains Distribution Proceedings of the 4th WSEAS International Conference on Engineering Mechanics, Structures, Engineering Geology Corfu Island, Greece 14–16 July 2011 

  28. 28. Janicek M. Cermak R. Obadal M. Piel C. Ponizil P. Ethylene Copolymers with Crystallizable Side Chains Macromolecules 2011 44 6759 6766 10.1021/ma201017m 

  29. 29. Kaminsky W. Piel C. Tailoring polyolefins by metallocene catalysis: Kinetic and mechanistic aspects J. Mol. Catal. A Chem. 2004 213 15 19 10.1016/j.molcata.2003.11.023 

  30. 30. MAG Recycling Services Available online: http://www.magrecycling.com.au/RecycledProducts/HDPE.aspx (accessed on 15 January 2013) 

  31. 31. University of Southern Mississippi Available online: http://www.pslc.ws/macrog/pe.htm (accessed on 15 January 2013) 

  32. 32. Zhang J. Wang X. Jin G.-X. Polymerized metallocene catalysts and late transition metal catalysts for ethylene polymerization Coord. Chem. Rev. 2006 250 95 109 10.1016/j.ccr.2005.06.002 

  33. 33. Piel C. Starck P. Seppälä J.V. Kaminsky W. Thermal and mechanical analysis of metallocene-catalyzed ethene–α-olefin copolymers: The influence of the length and number of the crystallizing side chains J. Polym. Sci. A Polym. Chem. 2006 44 1600 1612 10.1002/pola.21265 

  34. 34. Starck P. Dynamic mechanical thermal analysis on Ziegler-Natta and metallocene type ethylene copolymers Eur. Polym. J. 1997 33 339 348 10.1016/S0014-3057(96)00178-4 

  35. 35. Natta G. Mazzanti G. Valvassori A. Sartori G. Fiumani D. Ethylene–propylene copolymerization in the presence of catalysts prepared from vanadium triacetylacetonate J. Polym. Sci. 1961 51 411 427 10.1002/pol.1961.1205115603 

  36. 36. Debras G. Process for Producing Polyethylene Having a Broad Molecular Weight Distribution WO1995010548 A1 2 2 1993 

  37. 37. Dammert R. Heino E.-L. Korvenoja T. Martinsson H.-B. A Multimodal Polymer Composition WO2000037556 A1 15 5 2000 

  38. 38. Zapata P.A. Quijada R. Lieberwirth I. Benavente R. Polyethylene Nanocomposites Obtained by in Situ Polymerization via a Metallocene Catalyst Supported on Silica Nanospheres Macromol. React. Eng. 2011 5 294 302 10.1002/mren.201100013 

  39. 39. Bianchini C. Giambastiani G. Rios I.G. Mantovani G. Meli A. Segarra A.M. Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands Coord. Chem. Rev. 2006 250 1391 1418 10.1016/j.ccr.2005.12.018 

  40. 40. Kukalyekar N. Balzano L. Peters G.W.M. Rastogi S. Chadwick J.C. Characteristics of Bimodal Polyethylene Prepared via Co-Immobilization of Chromium and Iron Catalysts on an MgCl 2 -Based Support Macromol. React. Eng. 2009 3 448 454 10.1002/mren.200900021 

  41. 41. Bianchini C. Giambastiani G. Luconi L. Meli A. Olefin oligomerization, homopolymerization and copolymerization by late transition metals supported by (imino)pyridine ligands Coord. Chem. Rev. 2010 254 431 455 10.1016/j.ccr.2009.07.013 

  42. 42. Alt F. Böhm L. Enderle H. Berthold J. Bimodal polyethylene—Interplay of catalyst and process Macromol. Symp. 2001 163 135 144 10.1002/1521-3900(200101)163:1 3.0.CO;2-7 

  43. 43. Chen X. Liu D. Wang H. Synthesis of Bimodal Polyethylene Using Ziegler-Natta Catalysts by Multiple H 2 Concentration Switching in a Single Slurry Reactor Macromol. React. Eng. 2010 4 342 346 10.1002/mren.200900072 

  44. 44. Fernandes F.A.N. Lona L.M.F. Multizone circulating reactor modeling for gas-phase polymerization.I. Reactor modeling J. Appl. Polym. Sci. 2004 93 1042 1052 10.1002/app.20573 

  45. 45. Ruff M. Paulik C. Controlling Polyolefin Properties by In-Reactor Blending, 1–Polymerization Process, Precise Kinetics, and Molecular Properties of UHMW-PE Polymers Macromol. React. Eng. 2012 6 302 317 10.1002/mren.201200019 

  46. 46. Small B.L. Brookhart M. Bennett A.M.A. Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene J. Am. Chem. Soc. 1998 120 4049 4050 10.1021/ja9802100 

  47. 47. Wang Q. Li L. Fan Z. Polyethylene with bimodal molecular weight distribution synthesized by 2,6-bis(imino)pyridyl complexes of Fe(II) activated with various activators Eur. Polym. J. 2004 40 1881 1886 10.1016/j.eurpolymj.2004.03.003 

  48. 48. Czaja K. Król B. Two-step polymerization of propylene over MgCl 2 -supported titanium catalyst Macromol. Chem. Phys. 1998 199 451 455 10.1002/(SICI)1521-3935(19980301)199:3 3.0.CO;2-J 

  49. 49. Pater J. Weickert G. van Swaaij W. Propene bulk polymerization kinetics: Role of prepolymerization and hydrogen AIChE J. 2003 49 180 193 10.1002/aic.690490116 

  50. 50. Ibrehem A.S. Hussain M.A. Ghasem N.M. Modified mathematical model for gas phase olefin polymerization in fluidized-bed catalytic reactor Chem. Eng. J. 2009 149 353 362 10.1016/j.cej.2008.05.014 

  51. 51. Monji M. Abedi S. Pourmahdian S. Taromi F.A. Effect of prepolymerization on propylene polymerization J. Appl. Polym. Sci. 2009 112 1863 1867 10.1002/app.29692 

  52. 52. Shan C.L.P. Soares J.B.P. Penlidis A. HDPE/LLDPE reactor blends with bimodal microstructures—Part II: Rheological properties Polymer 2003 44 177 185 10.1016/S0032-3861(02)00721-8 

  53. 53. Hutchinson R.A. Chen C.M. Ray W.H. Polymerization of olefins through heterogeneous catalysis X: Modeling of particle growth and morphology J. Appl. Polym. Sci. 1992 44 1389 1414 10.1002/app.1992.070440811 

  54. 54. Meier G.B. Weickert G. van Swaaij W.P.M. FBR for catalytic propylene polymerization: Controlled mixing and reactor modelling AIChE J. 2002 6 1268 1283 

  55. 55. Shamiri A. Hussain M.A. Mjalli F.S. Moustavi N. Kinetic modeling of propylene homopolymerization in a gas-phase fluidized-bed reactor Chem. Eng. J. 2010 161 240 249 10.1016/j.cej.2010.04.037 

  56. 56. Shamiri A. Hussain M.A. Mjalli F.S. Moustavi N. Improved single phase modeling of propylene polymerization in a fluidized bed reactor Comput. Chem. Eng. 2012 36 35 47 10.1016/j.compchemeng.2011.07.015 

  57. 57. Shamiri A. Hussain M.A. Mjalli F.S. Shafeeyan M.S. Mostoufi N. Experimental and Modeling Analysis of Propylene Polymerization in a Pilot-Scale Fluidized Bed Reactor Ind. Eng. Chem. Res. 2014 53 8694 8705 10.1021/ie501155h 

  58. 58. Kaminsky W. Highly active metallocene catalysts for olefin polymerization J. Chem. Soc. Dalton Trans. 1998 1413 1418 10.1039/a800056e 

  59. 59. Brintzinger H.H. Fischer D. Mulhaupt R. Rieger B. Waymouth R.M. Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts Angew. Chem. Int. Ed. Engl. 1995 34 1143 1170 10.1002/anie.199511431 

  60. 60. Resconi L. Cavallo L. Fait A. Piemontesi F. Selectivity in Propene Polymerization with Metallocene Catalysts Chem. Rev. 2000 100 1253 1345 10.1021/cr9804691 11749266 

  61. 61. Razavi A. Thewalt U. Site selective ligand modification and tactic variation in polypropylene chains produced with metallocene catalysts Coord. Chem. Rev. 2006 250 155 169 10.1016/j.ccr.2005.07.006 

  62. 62. Chen E.Y.-X. Coordination Polymerization of Polar Vinyl Monomers by Single-Site Metal Catalysts Chem. Rev. 2009 109 5157 5214 10.1021/cr9000258 19739636 

  63. 63. Kaminsky W. Kuelper K. Brintzinger H.H. Wild F.R.W.P. Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalyst Angew. Chem. Int. Ed. Engl. 1985 24 507 508 10.1002/anie.198505071 

  64. 64. Kaminsky W. Sinn H. Methylaluminoxane: Key Component for New Polymerization Catalysts Adv. Polym. Sci. 2013 258 1 28 10.1007/12_2013_226 

  65. 65. Makio H. Prasad A.V. Terao H. Saito J. Fujita T. Isospecific propylene polymerization with in situ generated bis(phenoxy-amine)zirconium and hafnium single site catalysts Dalton Trans. 2013 42 9112 9119 23515526 

  66. 66. Press K. Venditto V. Goldberg I. Kol M. Zirconium and hafnium Salalen complexes in isospecific polymerisation of propylene Dalton Trans. 2013 42 9096 9103 10.1039/c3dt00024a 23471354 

  67. 67. Karger-Kocsis J. Polypropylene. 2. Copolymers and Blends Chapman & Hall London, UK 1995 

  68. 68. Ge Z. Chen T. Song Z. Quality prediction for polypropylene production process based on CLGPR model Control Eng. Pract. 2011 19 423 432 10.1016/j.conengprac.2011.01.002 

  69. 69. Shamiri A. Hussain M.A. Mjalli F.S. Mostoufi N. Hajimolana S. Dynamics and Predictive Control of Gas Phase Propylene Polymerization in Fluidized Bed Reactors Chin. J. Chem. Eng. 2013 21 1015 1029 10.1016/S1004-9541(13)60565-0 

  70. 70. Gómez-Elvira J.M. Tiemblo P. Elvira M. Matisova-Rychla L. Rychly J. Relaxations and thermal stability of low molecular weight predominantly isotactic metallocene and Ziegler-Natta polypropylene Polym. Degrad. Stab. 2004 85 873 882 10.1016/j.polymdegradstab.2004.04.003 

  71. 71. Datta S. Sahnoune A. Transparent and Translucent Crosslinked Propylenebased Elastomers, and Their Production and Use WO2005049672A1 19 5 2005 

  72. 72. Kaminsky W. Laban A. Metallocene catalysis Appl. Catal. A 2001 222 47 61 10.1016/S0926-860X(01)00829-8 

  73. 73. Nie Y. Sun J. Yin W. Wang L. Shi Z. Schumann H. Novel diphenyl thioether-bridged binuclear metallocenes of Ti and Zr for synthesis of polyethylene with broad molecular weight distribution J. Appl. Polym. Sci. 2011 120 3530 3535 10.1002/app.33514 

  74. 74. Ronkko H.-L. Korpela T. Knuuttila H. Pakkanen T.T. Denifl P. Leinonen T. Kemell M. Leskela M. Particle growth and fragmentation of solid self-supported Ziegler–Natta-type catalysts in propylene polymerization J. Mol. Catal. A Chem. 2009 309 40 49 10.1016/j.molcata.2009.04.013 

  75. 75. Vyas P.B. Kaur S. Patil H.R. Gupta V.K. Synthesis of polypropylene with varied microstructure and molecular weights characteristics using supported titanium catalyst system J. Polym. Res. 2011 18 235 239 10.1007/s10965-010-9411-7 

  76. 76. Pater J.T.M. Weickert G. Loos J. van Swaaij W.P.M. High precision prepolymerization of propylene at extremely low reaction rates—Kinetics and morphology Chem. Eng. Sci. 2001 56 4107 4120 10.1016/S0009-2509(01)00081-1 

  77. 77. Mayrhofer L. Paulik C. Growth Kinetics Obtained from Single Particle Gas-Phase Ethene Homopolymerization with a Ziegler-Natta Catalyst Macromol. React. Eng. 2013 8 194 200 10.1002/mren.201300153 

  78. 78. Najafi M. Parvazinia M. Ghoreishy M.H.R. Kiparissides G. Development of a 2D Single Particle Model to Analyze the Effect of Initial Particle Shape and Breakage in Olefin Polymerization Macromol. React. Eng. 2013 8 29 45 

  79. 79. Tregubov A.A. Zakharov V.A. Mikenas T.B. Supported titanium-magnesium catalysts for ethylene polymerization: A comparative study of catalysts containing isolated and clustered titanium ions in different oxidation states J. Polym. Sci. A Polym. Chem. 2009 47 6362 6372 10.1002/pola.23677 

  80. 80. Damavandi S. Galland G.B. Zohuri G.H. Sandaroos R. FI Zr-type catalysts for ethylene polymerization J. Polym. Res. 2011 18 1059 1065 10.1007/s10965-010-9507-0 

  81. 81. Dashti A. Ramazani S.A. Hiraoka Y. Kim S.Y. Taniike T. Terano M. Kinetic and morphological study of a magnesium ethoxide-based Ziegler-Natta catalyst for propylene polymerization Polym. Int. 2009 58 40 45 10.1002/pi.2490 

  82. 82. Yang G. Hong M. Li Y. Yu S. Synthesis of Novel Bis (β-enaminoketonato) titanium Catalyst with High Activity and Excellent Ability to Copolymerize Olefins Macromol. Chem. Phys. 2012 213 2311 2318 10.1002/macp.201200350 

  83. 83. Busico V. Metal-catalysed olefin polymerisation into the new millennium: A perspective outlook Dalton Trans. 2009 41 8794 8802 10.1039/b911862b 

  84. 84. Quadrelli E.A. Basset J.M. On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis Coord. Chem. Rev. 2010 254 707 728 10.1016/j.ccr.2009.09.031 

  85. 85. Yu Y. Fu Z. Fan Z. Chain transfer reactions of propylene polymerization catalyzed by AlEt 3 activated TiCl 4 /MgCl 2 catalyst under very low monomer addition rate J. Mol. Catal. A Chem. 2012 363–364 134 139 10.1016/j.molcata.2012.05.027 

  86. 86. Arlman E.J. Cossee P. Ziegler-Natta catalysis III. Stereospecific polymerization of propene with the catalyst system TiCl 3 -AlEt 3 J. Catal. 1964 3 99 104 10.1016/0021-9517(64)90097-1 

  87. 87. Seppälä J. Kokko E. Lehmus P. née Malmberg A.P. Hakala K. Lipponen S. Löfgren B. Functional Polyolefins through Polymerizations by Using Bis(indenyl) Zirconium Catalysts Adv. Polym. Sci. 2013 258 179 232 10.1007/12_2013_210 

  88. 88. Doi Y. Suzuki S. Soga K. Living coordination polymerization of propene with a highly active vanadium-based catalyst Macromolecules 1986 19 2896 2900 10.1021/ma00166a002 

  89. 89. Piers W.E. Marwitz A.J.V. Mercier L.G. Mechanistic Aspects of Bond Activation with Perfluoroarylboranes Inorg. Chem. 2011 50 12252 12262 10.1021/ic2006474 21612200 

  90. 90. Pater J.T.M. Weickert G. van Swaaij W.P.M. Polymerization of liquid propylene with a fourth-generation Ziegler-Natta catalyst: Influence of temperature, hydrogen, monomer concentration, and prepolymerization method on powder morphology J. Appl. Polym. Sci. 2003 87 1421 1435 10.1002/app.11570 

  91. 91. Weickert G. Meier G.B. Pater J.T.M. Westerterp K.R. The particle as microreactor: Catalytic propylene polymerizations with supported metallocenes and Ziegler-Natta catalysts Chem. Eng. Sci. 1999 54 3291 3296 10.1016/S0009-2509(98)00441-2 

  92. 92. Abu-Sharkh B. Hussein I.H. MD simulation of the influence of branch content on collapse and conformation of LLDPE chains crystallizing from highly dilute solutions Polymer 2002 43 6333 6340 10.1016/S0032-3861(02)00537-2 

  93. 93. Kaminsky W. Sperber O. Werner R. Pentalene substituted metallocene complexes for olefin polymerization Coord. Chem. Rev. 2006 250 110 117 10.1016/j.ccr.2005.05.027 

  94. 94. Kaminsky W. Zirconocene catalysts for olefin polymerization Catal. Today 1994 20 257 271 10.1016/0920-5861(94)80005-7 

  95. 95. Wang B. Ansa-metallocene polymerization catalysts: Effects of the bridges on the catalytic activities Coord. Chem. Rev. 2006 250 242 258 10.1016/j.ccr.2005.05.012 

  96. 96. Kaminsky W. Trends in Polyolefin Chemistry Macromol. Chem. Phys. 2008 209 459 466 10.1002/macp.200700575 

  97. 97. Kaminsky W. Hopf A. Piel C. C s -symmetric hafnocene complexes for synthesis of syndiotactic polypropene J. Organometal. Chem. 2003 684 200 205 10.1016/S0022-328X(03)00731-9 

  98. 98. Stadler F.J. Piel C. Klimke K. Kaschta J. Parkinson M. Wilhelm M. Kaminsky W. Münstedt H. Influence of Type and Content of Various Comonomers on Long-Chain Branching of Ethene/α-Olefin Copolymers Macromolecules 2006 39 1474 1482 10.1021/ma0514018 

  99. 99. Piel C. Stadler F.J. Kaschta J. Rulhoff S. Münstedt H. Kaminsky W. Structure-Property Relationships of Linear and Long-Chain Branched Metallocene High-Density Polyethylenes Characterized by Shear Rheology and SEC-MALLS Macromol. Chem. Phys. 2006 207 26 38 10.1002/macp.200500321 

  100. 100. Kakinuki K. Fujiki M. Nomura K. Copolymerization of Ethylene with α-Olefins Containing Various Substituents Catalyzed by Half-Titanocenes: Factors Affecting the Monomer Reactivities Macromolecules 2009 42 4585 4595 10.1021/ma900576v 

  101. 101. Suhm J. Heinemann J. Wörner C. Müller P. Stricker F. Kressler J. Okuda J. Mülhaupt R. Novel polyolefin materials via catalysis and reactive processing Macromol. Symp. 1998 129 1 28 10.1002/masy.19981290103 

  102. 102. Soga K. Uozumi T. Nakamura S. Toneri T. Teranishi T. Sano T. Arai T. Shiono T. Structures of polyethylene and copolymers of ethylene with 1-octene and oligoethylene produced with the Cp 2 ZrCl 2 and [(C 5 Me 4 )SiMe 2 N(t-Bu)]TiCl 2 catalysts Macromol. Chem. Phys. 1996 197 4237 4251 10.1002/macp.1996.021971220 

  103. 103. Leone G. Losio S. Piovani D. Sommazzi A. Ricci G. Living copolymerization of ethylene with 4-methyl-1-pentene by an α-diimine Ni(II)/Et 2 AlCl catalyst: Synthesis of diblock copolymers via sequential monomer addition Polym. Chem. 2012 3 1987 1990 10.1039/c2py20218b 

  104. 104. Lee J. Kim Y. Preparation of polyethylene with controlled bimodal molecular weight distribution using zirconium complexes J. Ind. Eng. Chem. 2012 18 429 432 10.1016/j.jiec.2011.11.105 

  105. 105. Nakayama Y. Sogo Y. Cai Z. Shiono T. Copolymerization of ethylene with 1,1-disubstituted olefins catalyzed by ansa-(fluorenyl)(cyclododecylamido)dimethyltitanium complexes J. Polym. Sci. A Polym. Chem. 2013 51 1223 1229 10.1002/pola.26491 

  106. 106. Shapiro P.J. Cotter W.D. Schaefer W.P. Labinger J.A. Bercaw J.E. Model Ziegler-Natta alpha-Olefin Polymerization Catalysts Derived from[{(η 5 -C 5 Me 4 )SiMe 2 (η 1 -NCMe 3 )}(PMe 3 )Sc(µ 2 -H)] 2 and[{(η 5 -C 5 Me 4 )SiMe 2 (η 1 -NCMe 3 )}Sc(µ 2 -CH 2 CH 2 CH 3 )] 2 , Synthesis, Structures, and Kinetic and Equilibrium Investigations of the Catalytically Active Species in Solution J. Am. Chem. Soc. 1994 116 4623 4640 

  107. 107. Cano J. Kunz K. Organometal J. How to synthesize a constrained geometry catalyst (CGC)—A survey J. Organomet. Chem. 2007 692 4411 4423 10.1016/j.jorganchem.2007.05.015 

  108. 108. Unverhau K. Kehr G. Fröhlich R. Erker G. Synthesis of [3]ferrocenophane-bridged Cp–amido zirconium complexes and ansa -zirconocene complexes and their use in catalytic polymerisation reactions Dalton Trans. 2011 40 3724 3736 10.1039/c0dt01430c 21384004 

  109. 109. Stevens J.C. Wilson D.R. Olefin Polymerization Process Using Supported Constrained Geometry Catalysts U.S. Patent 6,884,857 B1 26 4 2005 

  110. 110. Okuda J. Schattenmann F.J. Wocadlo S. Massa W. Synthesis and Characterization of Zirconium Complexes Containing a Linked Amido-Fluorenyl Ligand Organometallics 1995 14 789 795 10.1021/om00002a028 

  111. 111. Spaleck W. Aulbach M. Bachmann B. Küber F. Winter A. Stereospecific metallocene catalysts: Scope and limits of rational catalyst design Macromol. Symp. 1995 89 237 247 10.1002/masy.19950890124 

  112. 112. Kaminsky W. Discovery of Methylaluminoxane as Cocatalyst for Olefin Polymerization Macromolecules 2012 45 3289 3297 10.1021/ma202453u 

  113. 113. Chien J.C.W. Wang B.P. Metallocene–methylaluminoxane catalysts for olefin polymerizations. IV. Active site determinations and limitation of the 14 CO radiolabeling technique J. Polym. Sci. A Polym. Chem. 1989 27 1539 1557 10.1002/pola.1989.080270507 

  114. 114. Kaminsky W. Ahlers A. Moeller-Lindenhof N. Asymmetrische Oligomerisation von Propen und 1-Buten mit einem Zirconocen/Aluminoxan-Katalysator Angew. Chem. 1989 101 1304 1306 (in German) 10.1002/ange.19891010942 

  115. 115. Ewen J.A. Amer J. Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts Chem. Soc. 1984 106 6355 6364 10.1021/ja00333a041 

  116. 116. Natta G. Corradini P. Allegra G. The different crystalline modifications of TiCl 3 , a catalyst component for the polymerization of α-olefins. I: α-, β-, γ-TiCl 3 . II: δ-TiCl 3 J. Polym. Sci. 1961 51 399 410 10.1002/pol.1961.1205115602 

  117. 117. Trementozzi Q. Geymer D.O. Boyd T. Dietrich H.J. Polymerization of Alpha-Olefins Using a Delta TiCL 3 Catalyst U.S. Patent 3573270 A 30 3 1971 

  118. 118. Boor J. Jr. Ziegler-Natta Catalysts and Polymerization Academic Press New York, NY, USA 1979 

  119. 119. Keii T. Kinetics of Ziegler-Natta Polymerization Kodansha Tokyo, Japan 1972 

  120. 120. Soares J.B.P. Mathematical modelling of the microstructure of polyolefins made by coordination polymerization: A review Chem. Eng. Sci. 2001 56 4131 4153 10.1016/S0009-2509(01)00083-5 

  121. 121. Zhang H.X. Lee Y.J. Park J.R. Lee D.H. Yoon K.B. Control of molecular weight distribution for polypropylene obtained by a commercial Ziegler-Natta catalyst: Effect of a cocatalyst and hydrogen J. Appl. Polym. Sci. 2011 120 101 108 10.1002/app.33080 

  122. 122. Lou J.Q. Tu S.T. Fan Z.Q. Polypropylene Chain Structure Regulation by Alkoxysilane and Ether Type External Donors in TiCl 4 /DIBP/MgCl 2 -AlEt 3 Ziegler-Natta Catalyst Iran. Polym. J. 2010 19 927 936 

  123. 123. Shen X.-R. Fu Z.-S. Hu J. Wang Q. Fan Z.-Q. Mechanism of Propylene Polymerization with MgCl 2 -Supported Ziegler-Natta Catalysts Based on Counting of Active Centers: The Role of External Electron Donor Phys. Chem. C 2013 117 15174 15182 10.1021/jp404416n 

  124. 124. Chadwick J.C. Polyolefins—Catalyst and Process Innovations and their Impact on Polymer Properties Macromol. React. Eng. 2009 3 428 432 10.1002/mren.200900043 

  125. 125. Andoni A. Chadwick J.C. Niemantsverdriet H.J.W. Thune P.C. The role of electron donors on lateral surfaces of MgCl 2 -supported Ziegler-Natta catalysts: Observation by AFM and SEM J. Catal. 2008 257 81 86 10.1016/j.jcat.2008.04.020 

  126. 126. Singh G. Kaur S. Makwana U. Patankar R.B. Gupta V.K. Influence of Internal Donors on the Performance and Structure of MgCl 2 Supported Titanium Catalysts for Propylene Polymerization Macromol. Chem. Phys. 2009 210 69 76 

  127. 127. Makwana U. Naik D.G. Singh G. Patel V. Patil H.R. Gupta V.K. Nature of Phthalates as Internal Donors in High Performance MgCl 2 Supported Titanium Catalysts Catal. Lett. 2009 131 624 631 10.1007/s10562-009-9981-3 

  128. 128. Kissin Y.V. Liu X.S. Pollick D.J. Brungard N.L. Chang M. Ziegler-Natta catalysts for propylene polymerization: Chemistry of reactions leading to the formation of active centers J. Mol. Catal. A Chem. 2008 287 45 52 10.1016/j.molcata.2008.02.026 

  129. 129. Heikkinen H. Liitia T. Virkkunen V. Leinonen T. Helaja T. Denifl P. Solid state 13 C-NMR characterisation study on fourth generation Ziegler-Natta catalysts Solid State Nucl Magn. Reson. 2012 43–44 36 41 

  130. 130. Lu L. Niu H. Dong J.Y. Propylene polymerization over MgCl 2 -supported TiCl 4 catalysts bearing different amounts of a diether internal electron donor: Extrapolation to the role of internal electron donor on active site J. Appl. Polym. Sci. 2012 124 1265 1270 10.1002/app.35154 

  131. 131. Alshaiban A. Soares J.B.P. Effect of Hydrogen and External Donor on Propylene Polymerization Kinetics with a 4th-Generation Ziegler-Natta Catalyst Macromol. React. Eng. 2012 6 265 274 10.1002/mren.201200002 

  132. 132. Marques M.F.V. da Silva Cardoso R. da Silva M.G. Preparation of MgCl 2 -supported Ziegler-Natta catalyst systems with new electron donors Appl. Catal. A 2010 374 65 70 10.1016/j.apcata.2009.11.027 

  133. 133. Harding G.W. van Reenen A.J. Polymerisation and structure–property relationships of Ziegler-Natta catalysed isotactic polypropylenes Eur. Polym. J. 2011 47 70 77 10.1016/j.eurpolymj.2010.10.019 

  134. 134. Vestberg T. Denifl P. Parkinson M. Wilen C.E. Effects of external donors and hydrogen concentration on oligomer formation and chain end distribution in propylene polymerization with Ziegler-Natta catalysts J. Polym. Sci. Part A Polym. Chem. 2010 48 351 358 

  135. 135. Thushara K.S. Gnanakumar E.S. Mathew R. Jha R.K. Ajithkumar T.G. Rajamohanan P.R. Sarma K. Padmanabhan S. Bhaduri S. Gopinath C.S. Toward an Understanding of the Molecular Level Properties of Ziegler-Natta Catalyst Support with and without the Internal Electron Donor J. Phys. Chem. C 2011 115 1952 1960 10.1021/jp1078289 

  136. 136. Brambilla L. Zerbi G. Piemontesi F. Nascetti S. Morini G. Structure of Donor Molecule 9,9-Bis(Methoxymethyl)-Fluorene in Ziegler-Natta Catalyst by Infrared Spectroscopy and Quantum Chemical Calculation J. Phys. Chem. C 2010 114 11475 11484 

  137. 137. Busico V. Cipullo R. Monaco G. Talarico G. Vacatello M. Chadwick J.C. Segre A.L. Sudmeijer O. High-Resolution 13 C-NMR Configurational Analysis of Polypropylene Made with MgCl 2 -Supported Ziegler-Natta Catalysts. 1. The “Model” System MgCl 2 /TiCl 4 –2,6-Dimethylpyridine/Al(C 2 H 5 ) 3 Macromolecules 1999 32 4173 4182 10.1021/ma981941n 

  138. 138. Liu B.P. Nitta T. Nakatani H. Terano M. Precise arguments on the distribution of stereospecific active sites on MgCl 2 -supported Ziegler-Natta catalysts Macromol. Symp. 2004 213 7 18 10.1002/masy.200450902 

  139. 139. Wang Q. Murayama N. Liu B.P. Terano M. Effects of Electron Donors on Active Sites Distribution of MgCl 2 -Supported Ziegler-Natta Catalysts Investigated by Multiple Active Sites Model Macromol. Chem. Phys. 2005 206 961 966 10.1002/macp.200400502 

  140. 140. Bukatov G.D. Zakharov V.A. Barabanov A.A. Mechanism of olefin polymerization on supported Ziegler-Natta catalysts based on data on the number of active centers and propagation rate constants Kinet. Catal. 2005 46 166 176 

  141. 141. Vanka K. Singh G. Iyer D. Gupta V.K. DFT Study of Lewis Base Interactions with the MgCl 2 Surface in the Ziegler-Natta Catalytic System: Expanding the Role of the Donors J. Phys. Chem. C 2010 114 15771 15781 10.1021/jp106673b 

  142. 142. Stukalov D.V. Zakharov V.A. Zilberberg I.L. Adsorption Species of Ethyl Benzoate in MgCl 2 -Supported Ziegler-Natta Catalysts. A Density Functional Theory Study J. Phys. Chem. C 2010 114 429 435 

  143. 143. Taniike T. Terano M. Coadsorption model for first-principle description of roles of donors in heterogeneous Ziegler-Natta propylene polymerization J. Catal. 2012 293 39 50 10.1016/j.jcat.2012.06.001 

  144. 144. Credendino R. Pater J.T.M. Liguori D. Morini G. Cavallo L. Investigating Alkoxysilane Coverage and Dynamics on the (104) and (110) Surfaces of MgCl 2 -Supported Ziegler-Natta Catalysts J. Phys. Chem. C 2012 116 22980 22986 10.1021/jp308658c 

  145. 145. Wondimagegn T. Ziegler T. The Role of External Alkoxysilane Donors on Stereoselectivity and Molecular Weight in MgCl 2 -Supported Ziegler-Natta Propylene Polymerization: A Density Functional Theory Study J. Phys. Chem. C 2012 116 1027 1033 10.1021/jp2097789 

  146. 146. Cheng R.H. Luo J. Liu Z. Sun J.W. Huang W.H. Zhang M.G. Yi J.J. Liu B.P. Adsorption of TiCl 4 and electron donor on defective MgCl 2 surfaces and propylene polymerization over Ziegler-Natta catalyst: A DFT study Chin. J. Polym. Sci. 2013 31 591 600 10.1007/s10118-013-1252-5 

  147. 147. Shen X.R. Hu J. Fu Z.S. Lou J.Q. Fan Z.Q. Counting the number of active centers in MgCl 2 -supported Ziegler-Natta catalysts by quenching with 2-thiophenecarbonyl chloride and study on the initial kinetics of propylene polymerization Catal. Commun. 2013 30 66 69 10.1016/j.catcom.2012.11.001 

  148. 148. Xia S.J. Fu Z.S. Liu X.Y. Fan Z.Q. Copolymerization of ethylene and 1-hexene with TiCl 4 /MgCl 2 catalysts modified by 2,6-diisopropylphenol Chin. J. Polym. Sci. 2013 31 110 121 10.1007/s10118-013-1201-3 

  149. 149. Hu J. Han B. Shen X.R. Fu Z.S. Fan Z.Q. Probing the roles of diethylaluminum chloride in propylene polymerization with MgCl 2 -supported Ziegler-Natta catalysts Chin. J. Polym. Sci. 2013 31 583 590 10.1007/s10118-013-1260-5 

  150. 150. Li J. Gao W. Wu Q. Li H. Mu Y. Synthesis and structures of adamantyl-substituted constrained geometry cyclopentadienyl–phenoxytitanium complexes and their catalytic properties for olefin polymerization J. Organomet. Chem. 2011 696 2499 2506 10.1016/j.jorganchem.2011.03.041 

  151. 151. Sinn H. Kaminsky W. Vollmer H.J. Woldt R. “Living Polymers” on Polymerization with Extremely Productive Ziegler Catalysts Angew. Chem. Int. Ed. Engl. 1980 19 390 392 10.1002/anie.198003901 

  152. 152. Grubbs R.H. Coates G.W. α-Agostic Interactions and Olefin Insertion in Metallocene Polymerization Catalysts Acc. Chem. Res. 1996 29 85 93 10.1021/ar9501683 

  153. 153. Lee I.M. Gauthier W.J. Ball J.M. Iyengar B. Collins S. Electronic effects of Ziegler-Natta polymerization of propylene and ethylene using soluble metallocene catalysts Organometallics 1992 11 2115 2122 10.1021/om00042a027 

  154. 154. Chapman A.M. Haddow M.F. Wass D.F. Cationic Group 4 Metallocene–(o-Phosphanylaryl)oxido Complexes: Synthetic Routes to Transition-Metal Frustrated Lewis Pairs Eur. J. Inorg. Chem. 2012 1546 1554 10.1002/ejic.201100968 

  155. 155. Berg D.J. Barclay T. Fei X. Trivalent lanthanide–alkene complexes: Crystallographic and NMR evidence for coordination of tethered alkenes in the solid state and solution J. Organomet. Chem. 2010 695 2703 2712 10.1016/j.jorganchem.2010.09.004 

  156. 156. Rocchigiani L. Ciancaleoni G. Zuccaccia C. Macchioni A. An Integrated NMR and DFT Study on the Single Insertion of α-Olefins into the M[BOND]C Bond of Group 4 Metallaaziridinium Ion Pairs ChemCatChem. 2013 5 519 528 10.1002/cctc.201200341 

  157. 157. Rowley C.N. Woo T.K. Counteranion Effects on the Zirconocene Polymerization Catalyst Olefin Complex from QM/MM Molecular Dynamics Simulations Organometallics 2011 30 2071 2074 10.1021/om101188t 

  158. 158. Bahri-Laleh N. Nekoomanesh-Haghighi M. Mirmohammadi S.A. A DFT study on the effect of hydrogen in ethylene and propylene polymerization using a Ti-based heterogeneous Ziegler-Natta catalyst J. Organomet. Chem. 2012 719 74 79 10.1016/j.jorganchem.2012.08.017 

  159. 159. Kawamura-Kuribayashi H. Koga N. Morokuma K. An ab initio MO and MM study of homogeneous olefin polymerization with silylene-bridged zirconocene catalyst and its regio- and stereoselectivity J. Am. Chem. Soc. 1992 114 8687 8694 10.1021/ja00048a049 

  160. 160. Hustad P.D. Tian J. Coates G.W. Mechanism of Propylene Insertion Using Bis(phenoxyimine)-Based Titanium Catalysts: An Unusual Secondary Insertion of Propylene in a Group IV Catalyst System J. Am. Chem. Soc. 2002 124 3614 3621 10.1021/ja0122593 11929251 

  161. 161. Cohen A. Coates G.W. Kol M. polymerization by C 1 -symmetric {ONNO'}-type salan zirconium complexes J. Polym. Sci. A Polym. Chem. 2013 51 593 600 10.1002/pola.26408 

  162. 162. Resconi L. Camurati I. Sudmeijer O. Chain transfer reactions in propylene polymerization with zirconocene catalysts Top. Catal. 1999 7 145 163 10.1023/A:1019115801193 

  163. 163. Ray G.J. Johnson P.E. Knox J.R. Carbon-13 Nuclear Magnetic Resonance Determination of Monomer Composition and Sequence Distribution in Ethylene-Propylene Copolymers Prepared with a Stereoregular Catalyst System Macromolecules 1977 10 773 778 10.1021/ma60058a010 

  164. 164. Lu L. Niu H. Dong J.-Y. Zhao X. Hu X. Ethylene/propylene copolymerization over three conventional C2-symmetric metallocene catalysts: Correlation between catalyst configuration and copolymer microstructure J. Appl. Polym. Sci. 2010 118 3218 3226 10.1002/app.32553 

  165. 165. Nekoomanesh M. Zohuri G.H. Mortazavi M.M. Jamjah R. Ahmadjo S. Structural Analysis of Ethylene/Propylene Copolymer Synthesized Using High Activity Bi-supported Ziegler-Natta Catalyst Iran. Polym. J. 2005 14 793 798 

  166. 166. Razavi A. Syndiotactic Polypropylene: Discovery, Development, and Industrialization via Bridged Metallocene Catalysts Adv. Polym. Sci. 2013 258 43 116 10.1007/12_2013_220 

  167. 167. Vestberg T. Parkinson M. Fonseca I. Wilén C.-E. Poly (propylene-co-ethylene) produced with a conventional and a self-supported Ziegler-Natta catalyst: Effect of ethylene and hydrogen concentration on activity and polymer structure J. Appl. Polym. Sci. 2012 124 4889 4896 

  168. 168. Randall J.C. Methylene Sequence Distributions and Number Average Sequence Lengths in Ethylene-Propylene Copolymers Macromolecules 1978 11 33 36 10.1021/ma60061a006 

  169. 169. Cheng H.N. Carbon-13 NMR analysis of ethylene-propylene rubbers Macromolecules 1984 17 1950 1955 10.1021/ma00140a012 

  170. 170. Natta G. Pasquon I. Zambelli A. Stereospecific Catalysts for the Head-To-Tail Polymerization of Propylene to a Crystalline Syndiotactic Polymer J. Am. Chem. Soc. 1962 84 1488 1490 10.1021/ja00867a029 

  171. 171. Wu J.Q. Li Y.S. Well-defined vanadium complexes as the catalysts for olefin polymerization Coord. Chem. Rev. 2011 255 2303 2314 10.1016/j.ccr.2011.01.048 

  172. 172. Pellecchia C. Zambelli A. Mazzeo M. Pappalardo D. Syndiotactic-specific polymerization of propene with Nickel-based catalysts. 3. Polymer end-groups and regiochemistry of propagation J. Mol. Catal. A Chem. 1998 128 229 237 10.1016/S1381-1169(97)00176-3 

  173. 173. Makio H. Terao H.A. Iwashita T. Fujita, FI Catalysts for Olefin Polymerization—A Comprehensive Treatment Chem. Rev. 2011 111 2363 2449 10.1021/cr100294r 21250670 

  174. 174. Takeuchi D. Recent progress in olefin polymerization catalyzed by transition metal complexes: New catalysts and new reactions Dalton Trans. 2010 39 311 328 

  175. 175. Small B.L. Brookhart M. Polymerization of propylene by a new generation of iron catalysts: Mechanisms of chain initiation, propagation, and termination Macromolecules 1999 32 2120 2130 

  176. 176. Britovsek G.J.P. Gibson V.C. Kimberley B.S. Maddox P.J. McTavish S.J. Solan G.A. White A.J.P. Williams D.J. Novel olefin polymerization catalysts based on iron and cobalt Chem. Commun. 1998 849 850 

  177. 177. Britovsek G.J.P. Gibson V.C. Wass D.F. The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes Angew. Chem. Int. Ed. 1999 38 428 447 10.1002/(SICI)1521-3773(19990215)38:4 3.0.CO;2-3 

  178. 178. Tian J. Coates G.W. Development of a Diversity-Based Approach for the Discovery of Stereoselective Polymerization Catalysts: Identification of a Catalyst for the Synthesis of Syndiotactic Polypropylene Angew. Chem. Int. Ed. 2000 39 3626 3629 10.1002/1521-3773(20001016)39:20 3.0.CO;2-U 

  179. 179. Tian J. Hustad P.D. Coates G.W. A New Catalyst for Highly Syndiospecific Living Olefin Polymerization: Homopolymers and Block Copolymers from Ethylene and Propylene J. Am. Chem. Soc. 2001 123 5134 5135 10.1021/ja0157189 11457359 

  180. 180. Heurtefeu B. Bouilhac C. Cloutet É. Taton D. Deffieux A. Cramail H. Polymer support of “single-site” catalysts for heterogeneous olefin polymerization Prog. Polym. Sci. 2011 36 89 126 10.1016/j.progpolymsci.2010.09.002 

  181. 181. Caporaso L. de Rosa C. Talarico G. The relationship between catalyst precursors and chain end groups in homogeneous propene polymerization catalysis J. Polym. Sci. A Polym. Chem. 2010 48 699 708 10.1002/pola.23831 

  182. 182. Bochmann M. The Chemistry of Catalyst Activation: The Case of Group 4 Polymerization Catalysts Organometallics 2010 29 4711 4740 10.1021/om1004447 

  183. 183. Alley W.M. Hamdemir I.K. Johnson K.A. Finke R.G. Ziegler-type hydrogenation catalysts made from Group 8–10 transition metal precatalysts and AlR3 cocatalysts: A critical review of the literature J. Mol. Catal. A Chem. 2010 315 1 27 10.1016/j.molcata.2009.07.007 

  184. 184. Laine A. Linnolahti M. Pakkanen T.A. Severn J.R. Kokko E. Pakkanen A. Comparative Theoretical Study on Homopolymerization of α-Olefins by Bis(cyclopentadienyl) Zirconocene and Hafnocene: Elemental Propagation and Termination Reactions between Monomers and Metals Organometallics 2010 29 1541 1550 10.1021/om900843h 

  185. 185. Nomura K. Zhang S. Design of Vanadium Complex Catalysts for Precise Olefin Polymerization Chem. Rev. 2011 111 2342 2362 10.1021/cr100207h 21033737 

  186. 186. Nomura K. Liu J. Half-titanocenes for precise olefin polymerisation: Effects of ligand substituents and some mechanistic aspects Dalton Trans. 2011 40 7666 7682 10.1039/c1dt10086f 21409219 

  187. 187. Nomura K. Fukuda H. Katao S. Fujiki M. Kim H.J. Kim D.-H. Saeed I. Olefin Polymerization by Half-Titanocenes Containing η2-Pyrazolato Ligands–MAO Catalyst Systems Macromolecules 2011 44 1986 1998 10.1021/ma200018z 

  188. 188. Tomotsu N. Ishihara N. Newman T.H. Malanga M.T. Syndiospecific polymerization of styrene J. Mol. Catal. A Chem. 1998 128 167 190 10.1016/S1381-1169(97)00171-4 

  189. 189. Schellenberg J.J. Recent transition metal catalysts for syndiotactic polystyrene Prog. Polym. Sci. 2009 34 688 718 10.1016/j.progpolymsci.2009.04.002 

  190. 190. Guo F. Nishiura M. Koshino H. Hou Z. Cycloterpolymerization of 1,6-Heptadiene with Ethylene and Styrene Catalyzed by a THF-Free Half-Sandwich Scandium Complex Macromolecules 2011 44 6335 6344 10.1021/ma201271r 

  191. 191. Liu K. Wu Q. Gao W. Mu Y. Ye L. Half-Titanocence Anilide Complexes Cp'TiCl2[N(2,6-R12C6H3)R2]: Synthesis, Structures and Catalytic Properties for Ethylene Polymerization and Copolymerization with 1-Hexene Eur. J. Inorg. Chem. 2011 1901 1909 

  192. 192. Nomura K. Fukuda H. Katao S. Fujiki M. Kim H.J. Kim D.-H. Zhang S. Effect of ligand substituents in olefin polymerisation by half-sandwich titanium complexes containing monoanionic iminoimidazolidide ligands–MAO catalyst systems Dalton Trans. 2011 40 7842 7849 21725548 

  193. 193. Redshaw C. Tang Y. Tridentate ligands and beyond in group IV metal α-olefin homo-/co-polymerization catalysis Chem. Soc. Rev. 2012 41 4484 4510 22592513 

  194. 194. Delferro M. Marks T.J. Multinuclear Olefin Polymerization Catalysts Chem. Rev. 2011 111 2450 2485 21329366 

  195. 195. Fink G. Contributions to the Ziegler-Natta Catalysis: An Anthology Adv. Polym. Sci. 2013 257 1 35 10.1007/12_2013_225 

  196. 196. Beddie C. Hollink E. Wei P. Gauld J. Stephan D.W. Use of Computational and Synthetic Chemistry in Catalyst Design: A New Family of High-Activity Ethylene Polymerization CatalystsBased on Titanium Tris(amino)phosphinimide Complexes Organometallics 2004 23 5240 5251 10.1021/om049545i 

  197. 197. Galeski A. Bartczak Z. Kazmierczak T. Slouf M. Morphology of undeformed and deformed polyethylene lamellar crystals Polymer 2010 51 5780 5787 10.1016/j.polymer.2010.10.004 

  198. 198. Gokmen M.T. Du Prez F.E. Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications Prog. Polym. Sci. 2012 37 365 405 10.1016/j.progpolymsci.2011.07.006 

  199. 199. Callais P. Outlook for PE and PP Resins. 16th Annual Canadian Plastics Resin Outlook Conference Available online: http://www.canplastics.com/conference/2011Presentations/5._Peter_Callais (accessed on 6 October 2011) 

  200. 200. Arriola D.J. Carnahan E.M. Hustad P.D. Kuhlman R.L. Wenzel TT. Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization Science 2006 312 714 719 10.1126/science.1125268 16675694 

  201. 201. Yoon J. Mathers R.T. Coates G.W. Thomas E.L. Optically Transparent and High Molecular Weight Polyolefin Block Copolymers toward Self-Assembled Photonic Band Gap Materials Macromolecules 2006 39 1913 1919 10.1021/ma0516642 

  202. 202. Domski G.J. Rose J.M. Coates G.W. Bolig A.D. Brookhart M. Living alkene polymerization: New methods for the precision synthesis of polyolefins Prog. Polym. Sci. 2007 32 30 92 10.1016/j.progpolymsci.2006.11.001 

  203. 203. Hustad P.D. Coates G.W. Insertion/Isomerization Polymerization of 1,5-Hexadiene: Synthesis of Functional Propylene Copolymers and Block Copolymers J. Am. Chem. Soc. 2002 124 11578 11579 10.1021/ja0273748 12296706 

  204. 204. Mathers R.T. Coates G.W. Cross metathesis functionalization of polyolefins Chem. Commun. 2004 422 423 10.1039/b313954a 

  205. 205. Funck A. Kaminsky W. Polypropylene carbon nanotube composites by in situ polymerization Compos. Sci. Technol. 2007 67 906 915 10.1016/j.compscitech.2006.01.034 

  206. 206. Kaminsky W. Metallocene Based Polyolefin Nanocomposites Materials 2014 7 1995 2013 10.3390/ma7031995 

  207. 207. Collins S. Polymerization catalysis with transition metal amidinate and related complexes Coord. Chem. Rev. 2011 255 118 138 10.1016/j.ccr.2010.07.005 

  208. 208. Chakrabarti M.H. Brandon N.P. Hashim M.A. Mjalli F.S. AlNashef I.M. Bahadori L. Abdul Manan N.S. Hussain M.A. Yufit V. Cyclic Voltammetry of Iron (III) Acetylacetonate in Quaternary Ammonium and Phosphonium Based Deep Eutectic Solvents Int. J. Electrochem. Sci. 2013 8 9652 9676 

  209. 209. Yusoff R. Aroua M.K. Shamiri A. Ahmady A. Jusoh N.S. Asmuni N.F. Bong L.C. Thee S.H. Density and Viscosity of Aqueous Mixtures of N-Methyldiethanolamines (MDEA) and Ionic Liquids J. Chem. Eng. Data 2013 58 240 247 10.1021/je300628e 

  210. 210. Chakrabarti M.H. Mjalli F.S. AlNashef I.M. Hashim M.A. Hussain M.A. Bahadori L. Low C.T.J. Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries Renew. Sustain. Energy Rev. 2014 30 254 270 10.1016/j.rser.2013.10.004 

  211. 211. Chakrabarti M.H. Brandon N.P. Mjalli F.S. Bahadori L. Al Nashef I.M. Hashim M.A. Hussain M.A. Low C.T.J. Yufit V. Cyclic Voltammetry of Metallic Acetylacetonate Salts in Quaternary Ammonium and Phosphonium Based Deep Eutectic Solvents J. Solut. Chem. 2013 42 2329 2341 10.1007/s10953-013-0111-x 

  212. 212. Bahadori L. Chakrabarti M.H. Mjalli F.S. AlNashef I.M. Abdul Manan N.S. Hashim M.A. Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems Electrochim. Acta 2013 113 205 211 10.1016/j.electacta.2013.09.102 

  213. 213. Lu J. Yan F. Texter J. Advanced applications of ionic liquids in polymer science Prog. Polym. Sci. 2009 34 431 448 

  214. 214. Ibrehem A.S. Hussain M.A. Ghasem N.M. Decentralized advanced model predictive controller of fluidized-bed for polymerization process Iran. J. Chem. Eng. 2012 31 91 117 

  215. 215. Ho Y.K. Shamiri A. Mjalli F.S. Hussain M.A. Control of industrial gas phase propylene polymerization in fluidized bed reactors J. Proc. Control 2012 22 947 958 10.1016/j.jprocont.2012.04.003 

  216. 216. Shamiri A. Hussain M.A. Mjalli F.S. Moustofi N. Shafeeyan M.S. Dynamic modeling of gas phase propylene homopolymerization in fluidized bed reactors Chem. Eng. Sci. 2011 66 1189 1199 10.1016/j.ces.2010.12.030 

  217. 217. Shamiri A. Hussain M.A. Mjalli F.S. Moustofi N. Comparative simulation study of gas-phase propylene polymerization in fluidized bed reactors using Aspen polymers and two phase models Chem. Ind. Chem. Eng. Q. 2013 19 13 24 10.2298/CICEQ111214038S 

  218. 218. Shamiri A. Hussain M.A. Mjalli F.S. Two phase dynamic model for gas phase propylene copolymerization in fluidized bed reactor Defect. Diffus. Forum 2011 312–315 1079 1084 10.4028/www.scientific.net/DDF.312-315.1079 

  219. 219. Huang R. Xu X. Lee S. Zhang Y. Kim B.J. Wu Q. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance Materials 2013 6 4122 4138 10.3390/ma6094122 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로