$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Molecular Dynamics Simulation for All 원문보기

Neuron, v.99 no.6, 2018년, pp.1129 - 1143  

Hollingsworth, Scott A. (Department of Computer Science, Stanford University, Stanford, CA 94305, USA) ,  Dror, Ron O. (Department of Computer Science, Stanford University, Stanford, CA 94305, USA)

Abstract AI-Helper 아이콘AI-Helper

Summary The impact of molecular dynamics (MD) simulations in molecular biology and drug discovery has expanded dramatically in recent years. These simulations capture the behavior of proteins and other biomolecules in full atomic detail and at very fine temporal resolution. Major improvements in si...

주제어

참고문헌 (166)

  1. SoftwareX Abraham 1 19 2015 10.1016/j.softx.2015.06.001 GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers 

  2. Acta Crystallogr. D Biol. Crystallogr. Afonine 68 352 2012 10.1107/S0907444912001308 Towards automated crystallographic structure refinement with phenix.refine 

  3. J. Chem. Phys. Alder 27 1208 1957 10.1063/1.1743957 Phase transition for a hard sphere system 

  4. J. Comput. Aided Mol. Des. Amaro 22 693 2008 10.1007/s10822-007-9159-2 An improved relaxed complex scheme for receptor flexibility in computer-aided drug design 

  5. Science Arkin 317 799 2007 10.1126/science.1142824 Mechanism of Na+/H+ antiporting 

  6. eLife Bae 5 e11273 2016 10.7554/eLife.11273 Structural insights into the mechanism of activation of the TRPV1 channel by a membrane-bound tarantula toxin 

  7. Sci. Rep. Baier 1 69 2011 10.1038/srep00069 Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor 

  8. Biochemistry Batabyal 55 6517 2016 10.1021/acs.biochem.6b00913 A comparative analysis of the effector role of redox partner binding in bacterial P450s 

  9. J. Am. Chem. Soc. Batabyal 139 13193 2017 10.1021/jacs.7b07656 Effect of redox partner binding on cytochrome P450 conformational dynamics 

  10. J. Phys. Chem. B Beckstein 105 12902 2001 10.1021/jp012233y A hydrophobic gating mechanism for nanopores 

  11. Biochim. Biophys. Acta Bernardi 1850 872 2015 10.1016/j.bbagen.2014.10.019 Enhanced sampling techniques in molecular dynamics simulations of biological systems 

  12. Nature Bernèche 414 73 2001 10.1038/35102067 Energetics of ion conduction through the K+ channel 

  13. Proc. Natl. Acad. Sci. USA Bethel 113 14049 2016 10.1073/pnas.1607574113 Atomistic insight into lipid translocation by a TMEM16 scramblase 

  14. Betz, R.M. (2017). Dabble. http://doi.org/10.5281/zenodo.836914 (Stanford University). 

  15. Proc. Natl. Acad. Sci. USA Birkner 109 12944 2012 10.1073/pnas.1205270109 Hydrophobic gating of mechanosensitive channel of large conductance evidenced by single-subunit resolution 

  16. J. Comput. Aided Mol. Des. Borhani 26 15 2012 10.1007/s10822-011-9517-y The future of molecular dynamics simulations in drug discovery 

  17. 10.1109/SC.2006.54 Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., et al. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing (ACM), p. 84. 

  18. Proc. Natl. Acad. Sci. USA Bowman 112 2734 2015 10.1073/pnas.1417811112 Discovery of multiple hidden allosteric sites by combining Markov state models and experiments 

  19. Proc. Natl. Acad. Sci. USA Brannigan 105 14418 2008 10.1073/pnas.0803029105 Embedded cholesterol in the nicotinic acetylcholine receptor 

  20. J. Comput. Chem. Brooks 30 1545 2009 10.1002/jcc.21287 CHARMM: the biomolecular simulation program 

  21. Acc. Chem. Res. Brunger 35 404 2002 10.1021/ar010034r Molecular dynamics applied to X-ray structure refinement 

  22. Proc. Natl. Acad. Sci. USA Buch 108 10184 2011 10.1073/pnas.1103547108 Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations 

  23. Science Burg 347 1113 2015 10.1126/science.aaa5026 Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor 

  24. Case 2017 AMBER 2017 

  25. Nature Chevalier 550 74 2017 10.1038/nature23912 Massively parallel de novo protein design for targeted therapeutics 

  26. Curr. Opin. Struct. Biol. Chodera 21 150 2011 10.1016/j.sbi.2011.01.011 Alchemical free energy methods for drug discovery: progress and challenges 

  27. J. Chem. Theory Comput. Clark 12 2990 2016 10.1021/acs.jctc.6b00201 Prediction of protein-ligand binding poses via a combination of induced fit docking and metadynamics simulations 

  28. Nature Coleman 532 334 2016 10.1038/nature17629 X-ray structures and mechanism of the human serotonin transporter 

  29. Nat. Rev. Drug Discov. Conn 8 41 2009 10.1038/nrd2760 Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders 

  30. Nat. Struct. Mol. Biol. Cordero-Morales 14 1062 2007 10.1038/nsmb1309 Molecular driving forces determining potassium channel slow inactivation 

  31. Nature Cuello 466 272 2010 10.1038/nature09136 Structural basis for the coupling between activation and inactivation gates in K(+) channels 

  32. eLife Cuello 6 e28032 2017 10.7554/eLife.28032 The gating cycle of a K+ channel at atomic resolution 

  33. Neuron Dawe 89 1264 2016 10.1016/j.neuron.2016.01.038 Distinct structural pathways coordinate the activation of AMPA receptor-auxiliary subunit complexes 

  34. Science de Groot 294 2353 2001 10.1126/science.1062459 Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF 

  35. J. Phys. Chem. B de Oliveira 110 22695 2006 10.1021/jp062845o On the application of accelerated molecular dynamics to liquid water simulations 

  36. J. Am. Chem. Soc. Dedmon 127 476 2005 10.1021/ja044834j Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations 

  37. Proc. Natl. Acad. Sci. USA Delemotte 108 6109 2011 10.1073/pnas.1102724108 Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations 

  38. J. Mol. Biol. Dhakshnamoorthy 396 293 2010 10.1016/j.jmb.2009.11.042 Cation-selective pathway of OmpF porin revealed by anomalous X-ray diffraction 

  39. Curr. Top. Med. Chem. Dickson 17 2626 2017 10.2174/1568026617666170414142908 Kinetics of ligand binding through advanced computational approaches: a review 

  40. Proc. Natl. Acad. Sci. USA Dror 108 18684 2011 10.1073/pnas.1110499108 Activation mechanism of the β2-adrenergic receptor 

  41. Proc. Natl. Acad. Sci. USA Dror 108 13118 2011 10.1073/pnas.1104614108 Pathway and mechanism of drug binding to G-protein-coupled receptors 

  42. Nature Dror 503 295 2013 10.1038/nature12595 Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs 

  43. Science Dror 348 1361 2015 10.1126/science.aaa5264 Structural basis for nucleotide exchange in heterotrimeric G proteins 

  44. BMC Biol. Durrant 9 71 2011 10.1186/1741-7007-9-71 Molecular dynamics simulations and drug discovery 

  45. PLoS Comput. Biol. Eastman 13 e1005659 2017 10.1371/journal.pcbi.1005659 OpenMM 7: rapid development of high performance algorithms for molecular dynamics 

  46. Nature Eichel 557 381 2018 10.1038/s41586-018-0079-1 Catalytic activation of β-arrestin by GPCRs 

  47. J. Biol. Chem. Erokhova 291 9712 2016 10.1074/jbc.M115.706986 The sodium glucose cotransporter SGLT1 is an extremely efficient facilitator of passive water transport 

  48. J. Biol. Chem. Felts 289 1825 2014 10.1074/jbc.M113.504654 The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport 

  49. Nature Fernandez-Leiro 537 339 2016 10.1038/nature19948 Unravelling biological macromolecules with cryo-electron microscopy 

  50. Biochemistry Fields 54 7272 2015 10.1021/acs.biochem.5b00569 “Bind and crawl” association mechanism of Leishmania major peroxidase and cytochrome c revealed by Brownian and molecular dynamics simulations 

  51. J. Biol. Chem. Fields 292 185 2017 10.1074/jbc.M116.743724 Calmodulin gates aquaporin 0 permeability through a positively charged cytoplasmic loop 

  52. Biophys. J. Freites 91 L90 2006 10.1529/biophysj.106.096065 A voltage-sensor water pore 

  53. Proteins Goh 82 1319 2014 10.1002/prot.24499 Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism 

  54. Nature Gonen 429 193 2004 10.1038/nature02503 Aquaporin-0 membrane junctions reveal the structure of a closed water pore 

  55. PLoS ONE González 6 e23815 2011 10.1371/journal.pone.0023815 Molecular basis of ligand dissociation in β-adrenergic receptors 

  56. Proc. Natl. Acad. Sci. USA Goricanec 113 E3629 2016 10.1073/pnas.1604125113 Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding 

  57. Nature Grabe 445 550 2007 10.1038/nature05494 Structure prediction for the down state of a potassium channel voltage sensor 

  58. PLoS Comput. Biol. Groban 2 e32 2006 10.1371/journal.pcbi.0020032 Conformational changes in protein loops and helices induced by post-translational phosphorylation 

  59. Proc. Natl. Acad. Sci. USA Gu 106 2589 2009 10.1073/pnas.0812299106 Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter 

  60. J. Chem. Phys. Hamelberg 120 11919 2004 10.1063/1.1755656 Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules 

  61. J. Chem. Theory Comput. Harder 12 281 2016 10.1021/acs.jctc.5b00864 OPLS3: a force field providing broad coverage of drug-like small molecules and proteins 

  62. Biochim. Biophys. Acta Harpole 1860 909 2018 10.1016/j.bbamem.2017.10.033 Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations 

  63. Proc. Natl. Acad. Sci. USA Hazuda 101 11233 2004 10.1073/pnas.0402357101 A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase 

  64. Proc. Natl. Acad. Sci. USA Henrion 109 8552 2012 10.1073/pnas.1116938109 Tracking a complete voltage-sensor cycle with metal-ion bridges 

  65. PLoS Comput. Biol. Hertig 12 e1004746 2016 10.1371/journal.pcbi.1004746 Revealing atomic-level mechanisms of protein allostery with molecular dynamics simulations 

  66. Nat. Struct. Mol. Biol. Hilger 25 4 2018 10.1038/s41594-017-0011-7 Structure and dynamics of GPCR signaling complexes 

  67. Protein Sci. Hollingsworth 24 49 2015 10.1002/pro.2583 Molecular dynamics of the P450cam-Pdx complex reveals complex stability and novel interface contacts 

  68. Proc. Natl. Acad. Sci. USA Hollingsworth 113 8723 2016 10.1073/pnas.1606474113 Conformational selectivity in cytochrome P450 redox partner interactions 

  69. J. Chem. Inf. Model. Hou 51 69 2011 10.1021/ci100275a Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations 

  70. Nature Huang 524 315 2015 10.1038/nature14886 Structural insights into μ-opioid receptor activation 

  71. Nat. Methods Huang 14 71 2017 10.1038/nmeth.4067 CHARMM36m: an improved force field for folded and intrinsically disordered proteins 

  72. J. Mol. Biol. Im 322 851 2002 10.1016/S0022-2836(02)00778-7 Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory 

  73. J. Mol. Biol. Im 319 1177 2002 10.1016/S0022-2836(02)00380-7 Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution 

  74. Science Jensen 336 229 2012 10.1126/science.1216533 Mechanism of voltage gating in potassium channels 

  75. eLife Jiang 6 e28671 2017 10.7554/eLife.28671 Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase 

  76. J. Comput. Chem. Jo 29 1859 2008 10.1002/jcc.20945 CHARMM-GUI: a web-based graphical user interface for CHARMM 

  77. Q. Rev. Biophys. Kappel 48 479 2015 10.1017/S0033583515000153 Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor 

  78. Nature Kato 2018 10.1038/s41586-018-0504-5 Structural mechanisms of selectivity and gating in anion channelrhodopsins 

  79. Nat. Struct. Biol. Karplus 9 646 2002 10.1038/nsb0902-646 Molecular dynamics simulations of biomolecules 

  80. Nat. Rev. Drug Discov. Kenakin 12 205 2013 10.1038/nrd3954 Signalling bias in new drug discovery: detection, quantification and therapeutic impact 

  81. Proc. Natl. Acad. Sci. USA Khafizov 109 E3035 2012 10.1073/pnas.1209039109 Investigation of the sodium-binding sites in the sodium-coupled betaine transporter BetP 

  82. Proc. Natl. Acad. Sci. USA Khandogin 104 16880 2007 10.1073/pnas.0703832104 Linking folding with aggregation in Alzheimer’s beta-amyloid peptides 

  83. J. Phys. Chem. B Klauda 114 7830 2010 10.1021/jp101759q Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types 

  84. Nature Koehl 558 547 2018 10.1038/s41586-018-0219-7 Structure of the μ-opioid receptor-Gi protein complex 

  85. Nature Krepkiy 462 473 2009 10.1038/nature08542 Structure and hydration of membranes embedded with voltage-sensing domains 

  86. Nature Kruse 504 101 2013 10.1038/nature12735 Activation and allosteric modulation of a muscarinic acetylcholine receptor 

  87. Proc. Natl. Acad. Sci. USA Kubota 114 E1857 2017 10.1073/pnas.1700453114 Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET 

  88. Rep. Prog. Phys. Laio 71 126601 2008 10.1088/0034-4885/71/12/126601 Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science 

  89. Cell Latorraca 169 96 2017 10.1016/j.cell.2017.03.010 Mechanism of substrate translocation in an alternating access transporter 

  90. Nature Latorraca 557 452 2018 10.1038/s41586-018-0077-3 Molecular mechanism of GPCR-mediated arrestin activation 

  91. Nature Lee 501 573 2013 10.1038/nature12484 A two-domain elevator mechanism for sodium/proton antiport 

  92. J. Mol. Biol. Levitt 46 269 1969 10.1016/0022-2836(69)90421-5 Refinement of protein conformations using a macromolecular energy minimization procedure 

  93. Proc. Natl. Acad. Sci. USA Li 110 7696 2013 10.1073/pnas.1218986110 Transient formation of water-conducting states in membrane transporters 

  94. Nat. Struct. Mol. Biol. Li 21 244 2014 10.1038/nsmb.2768 Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain 

  95. Proc. Natl. Acad. Sci. USA Liang 113 E6955 2016 10.1073/pnas.1615471113 Acid activation mechanism of the influenza A M2 proton channel 

  96. J. Chem. Phys. Lifson 49 5116 1968 10.1063/1.1670007 Consistent force field for calculations of conformations vibrational spectra and enthalpies of cycloalkane and N-alkane molecules 

  97. J. Am. Chem. Soc. Lin 124 5632 2002 10.1021/ja0260162 Computational drug design accommodating receptor flexibility: the relaxed complex scheme 

  98. Nature Lindorff-Larsen 433 128 2005 10.1038/nature03199 Simultaneous determination of protein structure and dynamics 

  99. Science Lindorff-Larsen 334 517 2011 10.1126/science.1208351 How fast-folding proteins fold 

  100. PLoS ONE Lindorff-Larsen 7 e32131 2012 10.1371/journal.pone.0032131 Systematic validation of protein force fields against experimental data 

  101. Biochemistry Liou 56 4371 2017 10.1021/acs.biochem.7b00564 Putidaredoxin binds to the same site on cytochrome P450cam in the open and closed conformation 

  102. Biophys. J. Liu 109 542 2015 10.1016/j.bpj.2015.06.037 Protonation of Glu(135) facilitates the outward-to-inward structural transition of fucose transporter 

  103. J. Mol. Biol. Ma 302 303 2000 10.1006/jmbi.2000.4014 A dynamic model for the allosteric mechanism of GroEL 

  104. J. Biol. Chem. Mager 286 23570 2011 10.1074/jbc.M111.230235 Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli: an electrophysiological study 

  105. Nature Manglik 537 185 2016 10.1038/nature19112 Structure-based discovery of opioid analgesics with reduced side effects 

  106. Chem. Phys. Lett. Maragliano 426 168 2006 10.1016/j.cplett.2006.05.062 A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations 

  107. Chem. Soc. Rev. Marrink 42 6801 2013 10.1039/c3cs60093a Perspective on the Martini model 

  108. Nature McCammon 267 585 1977 10.1038/267585a0 Dynamics of folded proteins 

  109. Nat. Chem. Biol. McCorvy 14 126 2018 10.1038/nchembio.2527 Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs 

  110. Biophys. J. McGibbon 109 1528 2015 10.1016/j.bpj.2015.08.015 MDTraj: a modern open library for the analysis of molecular dynamics trajectories 

  111. Neuron Minor 54 511 2007 10.1016/j.neuron.2007.04.026 The neurobiologist’s guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data 

  112. J. Chem. Theory Comput. Mirjalili 9 1294 2013 10.1021/ct300962x Protein structure refinement through structure selection and averaging from molecular dynamics ensembles 

  113. Structure Mobley 17 489 2009 10.1016/j.str.2009.02.010 Binding of small-molecule ligands to proteins: “what you see” is not always “what you get” 

  114. J. Med. Chem. Newman 55 6689 2012 10.1021/jm300482h Molecular determinants of selectivity and efficacy at the dopamine D3 receptor 

  115. Proc. Natl. Acad. Sci. USA Nguyen 101 16180 2004 10.1073/pnas.0407273101 Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides 

  116. Mol. Pharmacol. Nivedha 93 288 2018 10.1124/mol.117.110395 Identifying functional hotspot residues for biased ligand design in G-protein-coupled receptors 

  117. Nature Ostmeyer 501 121 2013 10.1038/nature12395 Recovery from slow inactivation in K+ channels is controlled by water molecules 

  118. eLife Paulino 6 e26232 2017 10.7554/eLife.26232 Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A 

  119. Nat. Commun. Perez 5 4231 2014 10.1038/ncomms5231 Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling 

  120. Curr. Opin. Struct. Biol. Perez 36 25 2016 10.1016/j.sbi.2015.12.002 Advances in free-energy-based simulations of protein folding and ligand binding 

  121. J. Comput. Chem. Phillips 26 1781 2005 10.1002/jcc.20289 Scalable molecular dynamics with NAMD 

  122. Nat. Struct. Mol. Biol. Prevost 19 642 2012 10.1038/nsmb.2307 A locally closed conformation of a bacterial pentameric proton-gated ion channel 

  123. PLoS Comput. Biol. Provasi 7 e1002193 2011 10.1371/journal.pcbi.1002193 Ligand-induced modulation of the free-energy landscape of G protein-coupled receptors explored by adaptive biasing techniques 

  124. Proc. Natl. Acad. Sci. USA Quick 106 5563 2009 10.1073/pnas.0811322106 Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation 

  125. Cell Ranson 107 869 2001 10.1016/S0092-8674(01)00617-1 ATP-bound states of GroEL captured by cryo-electron microscopy 

  126. Proteins Raval 80 2071 2012 10.1002/prot.24098 Refinement of protein structure homology models via long, all-atom molecular dynamics simulations 

  127. Proc. Natl. Acad. Sci. USA Robustelli 115 E4758 2018 10.1073/pnas.1800690115 Developing a molecular dynamics force field for both folded and disordered protein states 

  128. J. Chem. Theory Comput. Roe 9 3084 2013 10.1021/ct400341p PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data 

  129. J. Chem. Theory Comput. Salomon-Ferrer 9 3878 2013 10.1021/ct400314y Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald 

  130. J. Comput. Aided Mol. Des. Sastry 27 221 2013 10.1007/s10822-013-9644-8 Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments 

  131. J. Med. Chem. Schames 47 1879 2004 10.1021/jm0341913 Discovery of a novel binding trench in HIV integrase 

  132. J. Mol. Graph. Schlitter 12 84 1994 10.1016/0263-7855(94)80072-3 Targeted molecular dynamics: a new approach for searching pathways of conformational transitions 

  133. J. Am. Chem. Soc. Schmidtke 133 18903 2011 10.1021/ja207494u Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design 

  134. J. Chem. Phys. Schwantes 141 090901 2014 10.1063/1.4895044 Perspective: Markov models for long-timescale biomolecular dynamics 

  135. Angew. Chem. Int. Ed. Engl. Senn 48 1198 2009 10.1002/anie.200802019 QM/MM methods for biomolecular systems 

  136. J. Am. Chem. Soc. Shan 133 9181 2011 10.1021/ja202726y How does a drug molecule find its target binding site? 

  137. Commun. ACM Shaw 51 91 2008 10.1145/1364782.1364802 Anton, a special-purpose machine for molecular dynamics simulation 

  138. 10.1109/SC.2014.9 Shaw, D.E., Grossman, J.P., Bank, J.A., Batson, B., Butts, J.A., Chao, J.C., Deneroff, M.M., Dror, R.O., Even, A., Fenton, C.H., et al. (2014). Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (IEEE Press), pp. 41-53. 

  139. Mol. Cell Shi 30 667 2008 10.1016/j.molcel.2008.05.008 The mechanism of a neurotransmitter:sodium symporter--inward release of Na+ and substrate is triggered by substrate in a second binding site 

  140. Nature Shoichet 432 862 2004 10.1038/nature03197 Virtual screening of chemical libraries 

  141. BMC Bioinformatics Skjærven 15 399 2014 10.1186/s12859-014-0399-6 Integrating protein structural dynamics and evolutionary analysis with Bio3D 

  142. Nature Snow 420 102 2002 10.1038/nature01160 Absolute comparison of simulated and experimental protein-folding dynamics 

  143. J. Mol. Biol. Stelzl 426 735 2014 10.1016/j.jmb.2013.10.024 Flexible gates generate occluded intermediates in the transport cycle of LacY 

  144. Science Spahn 355 966 2017 10.1126/science.aai8636 A nontoxic pain killer designed by modeling of pathological receptor conformations 

  145. IEEE Int. Symp. Parallel Distrib. Process Workshops Phd Forum Stone 2016 89 2016 Evaluation of emerging energy-efficient heterogeneous computing platforms for biomolecular and cellular simulation workloads 

  146. Chem. Phys. Lett. Sugita 314 141 1999 10.1016/S0009-2614(99)01123-9 Replica-exchange molecular dynamics method for protein folding 

  147. Proc. Natl. Acad. Sci. USA Suomivuori 114 7043 2017 10.1073/pnas.1703625114 Energetics and dynamics of a light-driven sodium-pumping rhodopsin 

  148. Science Tajkhorshid 296 525 2002 10.1126/science.1067778 Control of the selectivity of the aquaporin water channel family by global orientational tuning 

  149. PLoS ONE Takemoto 10 e0131094 2015 10.1371/journal.pone.0131094 Molecular dynamics of channelrhodopsin at the early stages of channel opening 

  150. Angew. Chem. Int. Ed. Engl. Tan 51 10078 2012 10.1002/anie.201205676 Using ligand-mapping simulations to design a ligand selectively targeting a cryptic surface pocket of polo-like kinase 1 

  151. Nature Törnroth-Horsefield 439 688 2006 10.1038/nature04316 Structural mechanism of plant aquaporin gating 

  152. Structure Trabuco 16 673 2008 10.1016/j.str.2008.03.005 Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics 

  153. Science Twomey 353 83 2016 10.1126/science.aaf8411 Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy 

  154. J. Am. Chem. Soc. Udier-Blagović 125 6016 2003 10.1021/ja034308c Validation of a model for the complex of HIV-1 reverse transcriptase with nonnucleoside inhibitor TMC125 

  155. J. Chem. Inf. Model. Vanommeslaeghe 52 3144 2012 10.1021/ci300363c Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing 

  156. Neuron Vargas 72 713 2011 10.1016/j.neuron.2011.09.024 In search of a consensus model of the resting state of a voltage-sensing domain 

  157. Trends Pharmacol. Sci. Violin 35 308 2014 10.1016/j.tips.2014.04.007 Biased ligands at G-protein-coupled receptors: promise and progress 

  158. Cell Wacker 170 414 2017 10.1016/j.cell.2017.07.009 How ligands illuminate GPCR molecular pharmacology 

  159. Cell Wacker 168 377 2017 10.1016/j.cell.2016.12.033 Crystal structure of an LSD-bound human serotonin receptor 

  160. J. Am. Chem. Soc. Wang 137 2695 2015 10.1021/ja512751q Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field 

  161. Nature Watanabe 468 988 2010 10.1038/nature09580 The mechanism of sodium and substrate release from the binding pocket of vSGLT 

  162. PLoS Comput. Biol. Wu 9 e1003211 2013 10.1371/journal.pcbi.1003211 Structural similarities and differences between amyloidogenic and non-amyloidogenic islet amyloid polypeptide (IAPP) sequences and implications for the dual physiological and pathological activities of these peptides 

  163. Proc. Natl. Acad. Sci. USA Zeuthen 113 E6887 2016 10.1073/pnas.1613744113 Structural and functional significance of water permeation through cotransporters 

  164. Proc. Natl. Acad. Sci. USA Zhang 115 E317 2018 10.1073/pnas.1717192115 Heat activation is intrinsic to the pore domain of TRPV1 

  165. Nature Zhao 497 643 2013 10.1038/nature12162 Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics 

  166. Nature Zhao 536 108 2016 10.1038/nature18961 Architecture of fully occupied GluA2 AMPA receptor-TARP complex elucidated by cryo-EM 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로