$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Electrochemical Oxidation of 5‐Hydroxymethylfurfural to 2,5‐Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation

ChemSusChem, v.11 no.13, 2018년, pp.2138 - 2145  

Kubota, Stephen R. (Department of Chemistry University of Wisconsin-Madison 1101 University Ave. Madison WI 53706 USA) ,  Choi, Kyoung‐Shin (Department of Chemistry University of Wisconsin-Madison 1101 University Ave. Madison WI 53706 USA)

Abstract AI-Helper 아이콘AI-Helper

Abstract2,5‐Furandicarboxylic acid (FDCA) has become an increasingly desirable platform chemical to replace terephthalic acid in the production of a variety of polymeric materials, including polyethylene terephthalate. FDCA can be produced by the oxidation of 5‐hydroxymethylfurfural (H...

참고문헌 (39)

  1. Caes, Benjamin R., Teixeira, Rodrigo E., Knapp, Kurtis G., Raines, Ronald T.. Biomass to Furanics: Renewable Routes to Chemicals and Fuels. ACS sustainable chemistry et engineering, vol.3, no.11, 2591-2605.

  2. Huber, George W., Dumesic, James A.. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis today, vol.111, no.1, 119-132.

  3. Corma, A., Iborra, S., Velty, A.. Chemical Routes for the Transformation of Biomass into Chemicals. Chemical reviews, vol.107, no.6, 2411-2502.

  4. Tong, Xinli, Ma, Yang, Li, Yongdan. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied catalysis. A, General, vol.385, no.1, 1-13.

  5. Bozell, Joseph J., Petersen, Gene R.. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green chemistry : an international journal and green chemistry resource : GC, vol.12, no.4, 539-554.

  6. Eerhart, A. J. J. E., Faaij, A. P. C., Patel, M. K.. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy & environmental science, vol.5, no.4, 6407-6422.

  7. Hu, Lei, Zhao, Geng, Hao, Weiwei, Tang, Xing, Sun, Yong, Lin, Lu, Liu, Shijie. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC advances, vol.2, no.30, 11184-.

  8. Davis, S.E., Houk, L.R., Tamargo, E.C., Datye, A.K., Davis, R.J.. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catalysis today, vol.160, no.1, 55-60.

  9. Zhang, Zehui, Deng, Kejian. Recent Advances in the Catalytic Synthesis of 2,5-Furandicarboxylic Acid and Its Derivatives. ACS catalysis, vol.5, no.11, 6529-6544.

  10. Rosatella, Andreia A., Simeonov, Svilen P., Frade, Raquel F. M., Afonso, Carlos A. M.. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green chemistry : an international journal and green chemistry resource : GC, vol.13, no.4, 754-793.

  11. Cha, Hyun Gil, Choi, Kyoung-Shin. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature chemistry, vol.7, no.4, 328-333.

  12. Chadderdon, David J., Xin, Le, Qi, Ji, Qiu, Yang, Krishna, Phani, More, Karren L., Li, Wenzhen. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green chemistry : an international journal and green chemistry resource : GC, vol.16, no.8, 3778-3786.

  13. Vuyyuru, K.R., Strasser, P.. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catalysis today, vol.195, no.1, 144-154.

  14. Jiang, Nan, You, Bo, Boonstra, Raquel, Terrero Rodriguez, Irina M., Sun, Yujie. Integrating Electrocatalytic 5-Hydroxymethylfurfural Oxidation and Hydrogen Production via Co–P-Derived Electrocatalysts. ACS energy letters, vol.1, no.2, 386-390.

  15. You, Bo, Liu, Xuan, Jiang, Nan, Sun, Yujie. A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. Journal of the American Chemical Society, vol.138, no.41, 13639-13646.

  16. Mishra, Dinesh Kumar, Lee, Hye Jin, Kim, Jinsung, Lee, Hong-Shik, Cho, Jin Ku, Suh, Young-Woong, Yi, Yongjin, Kim, Yong Jin. MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green chemistry : an international journal and green chemistry resource : GC, vol.19, no.7, 1619-1623.

  17. Gao, Tianqi, Gao, Tianyu, Fang, Wenhao, Cao, Qiue. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in water by hydrotalcite-activated carbon composite supported gold catalyst. Molecular catalysis, vol.439, 171-179.

  18. Han, Xuewang, Geng, Liang, Guo, Yong, Jia, Rong, Liu, Xiaohui, Zhang, Yongguang, Wang, Yanqin. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C–O–Mg catalyst. Green chemistry : an international journal and green chemistry resource : GC, vol.18, no.6, 1597-1604.

  19. Atlas of Electrochemical Equilibria in Aqueous Solutions Pourbaix M. 1974 

  20. Nelson, A. J., Reynolds, John G., Roos, Joseph W.. Core-level satellites and outer core-level multiplet splitting in Mn model compounds. Journal of vacuum science & technology. A, Vacuum, surfaces, and films, vol.18, no.4, 1072-1076.

  21. Chigane, Masaya, Ishikawa, Masami. Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism. Journal of the Electrochemical Society : JES, vol.147, no.6, 2246-.

  22. Galakhov, V. R., Demeter, M., Bartkowski, S., Neumann, M., Ovechkina, N. A., Kurmaev, E. Z., Lobachevskaya, N. I., Mukovskii, Ya. M., Mitchell, J., Ederer, D. L.. Mn3sexchange splitting in mixed-valence manganites. Physical review. B, Condensed matter and materials physics, vol.65, no.11, 113102-.

  23. Cerrato, José M., Hochella, Michael F., Knocke, William R., Dietrich, Andrea M., Cromer, Thomas F.. Use of XPS to Identify the Oxidation State of Mn in Solid Surfaces of Filtration Media Oxide Samples from Drinking Water Treatment Plants. Environmental science & technology, vol.44, no.15, 5881-5886.

  24. Huynh, Michael, Shi, Chenyang, Billinge, Simon J. L., Nocera, Daniel G.. Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society, vol.137, no.47, 14887-14904.

  25. Wu, M.-S., Chiang, P.-C. J., Lee, J.-T., Lin, J.-C.. Synthesis of Manganese Oxide Electrodes with Interconnected Nanowire Structure as an Anode Material for Rechargeable Lithium Ion Batteries. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.109, no.49, 23279-23284.

  26. Jeong, Y. U., Manthiram, A.. Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes. Journal of the Electrochemical Society : JES, vol.149, no.11, A1419-.

  27. Omomo, Yoshitomo, Sasaki, Takayoshi, Watanabe, Mamoru. Preparation of protonic layered manganates and their intercalation behavior. Solid state ionics, vol.151, no.1, 243-250.

  28. Roylance, John J., Choi, Kyoung-Shin. Electrochemical reductive biomass conversion: direct conversion of 5-hydroxymethylfurfural (HMF) to 2,5-hexanedione (HD) via reductive ring-opening. Green chemistry : an international journal and green chemistry resource : GC, vol.18, no.10, 2956-2960.

  29. Wojcieszak, Robert, Santarelli, Francesco, Paul, Sébastien, Dumeignil, Franck, Cavani, Fabrizio, Gonçalves, Renato V. Recent developments in maleic acid synthesis from bio-based chemicals. Sustainable chemical processes, vol.3, no.1, 9-.

  30. Top Value-Added Chemicals From Biomass, Volume 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas Werpy T. 2004 

  31. Vasudevan, D.. Reduction of maleic acid at a Ti/ceramic TiO2 cathode. Journal of applied electrochemistry, vol.25, no.2,

  32. Muzumdar, A. V., Sawant, S. B., Pangarkar, V. G.. Reduction of Maleic Acid to Succinic Acid on Titanium Cathode. Organic process research & development, vol.8, no.4, 685-688.

  33. Int. J. Electrochem. Sci. Zhao F. 12931 7 2012 10.1016/S1452-3981(23)16597-7 

  34. Wang, F., Yan, X., Xu, M., Li, S., Fang, W.. Electrochemical performance and electroreduction of maleic acid on Ce-doped nano-TiO2 film electrode. Electrochimica acta, vol.97, 253-258.

  35. Kuster, B. F. M.. 5‐Hydroxymethylfurfural (HMF). A Review Focussing on its Manufacture. Die Stärke = Starch, vol.42, no.8, 314-321.

  36. Patil, Sushil K. R., Lund, Carl R. F.. Formation and Growth of Humins via Aldol Addition and Condensation during Acid-Catalyzed Conversion of 5-Hydroxymethylfurfural. Energy & fuels : an American Chemical Society journal, vol.25, no.10, 4745-4755.

  37. van Zandvoort, Ilona, Wang, Yuehu, Rasrendra, Carolus B., van Eck, Ernst R. H., Bruijnincx, Pieter C. A., Heeres, Hero J., Weckhuysen, Bert M.. Formation, Molecular Structure, and Morphology of Humins in Biomass Conversion: Influence of Feedstock and Processing Conditions. ChemSusChem, vol.6, no.9, 1745-1758.

  38. Fachri, Boy A., Abdilla, Ria M., Bovenkamp, Henk H. van de, Rasrendra, Carolus B., Heeres, Hero J.. Experimental and Kinetic Modeling Studies on the Sulfuric Acid Catalyzed Conversion of d-Fructose to 5-Hydroxymethylfurfural and Levulinic Acid in Water. ACS sustainable chemistry et engineering, vol.3, no.12, 3024-3034.

  39. Sumerskii, I. V., Krutov, S. M., Zarubin, M. Ya.. Humin-like substances formed under the conditions of industrial hydrolysis of wood. Russian journal of applied chemistry, vol.83, no.2, 320-327.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로