$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biopolymeric In Situ Hydrogels for Tissue Engineering and Bioimaging Applications 원문보기

Tissue engineering and regenerative medicine, v.15 no.5, 2018년, pp.575 - 590  

Sontyana, Adonijah Graham ,  Mathew, Ansuja Pulickal ,  Cho, Ki-Hyun ,  Uthaman, Saji ,  Park, In-Kyu

초록이 없습니다.

참고문헌 (73)

  1. Biomaterials D Campoccia 19 2101 1998 10.1016/S0142-9612(98)00042-8 Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials. 1998;19:2101-27. 

  2. J Control Release GD Prestwich 53 93 1998 10.1016/S0168-3659(97)00242-3 Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR. Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release. 1998;53:93-103. 

  3. 10.1002/0471440264.pst663 Park KM, Park KD. Injectable hydrogels: properties and applications. In: Chatgilialoglu C, Studer A, editors. Encyclopedia of radicals in chemistry, biology, and materials. 2017. https://doi.org/10.1002/0471440264.pst663 . 

  4. Adv Drug Deliv Rev AS Hoffman 64 18 2012 10.1016/j.addr.2012.09.010 Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18-23. 

  5. J Urol A Atala 150 745 1993 10.1016/S0022-5347(17)35603-3 Atala A, Cima LG, Kim W, Paige KT, Vacanti JP, Retik AB, et al. Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol. 1993;150:745-7. 

  6. Biomaterials E Westhaus 22 453 2001 10.1016/S0142-9612(00)00200-3 Westhaus E, Messersmith PB. Triggered release of calcium from lipid vesicles: a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials. 2001;22:453-62. 

  7. Gulrez S, Al-Assaf S, Phillips G. Hydrogels: methods of preparation, characterisation and applications. In: Carpi A, editor. Progress in molecular and environmental bioengineering - from analysis and modeling to technology applications. In Tech; 2011. p. 117-50. 

  8. ACS Macro Lett Y Wu 3 1145 2014 10.1021/mz500498y Wu Y, Guo B, Ma PX. Injectable electroactive hydrogels formed via host-guest interactions. ACS Macro Lett. 2014;3:1145-50. 

  9. Chem Rev X Ma 115 7794 2015 10.1021/cr500392w Ma X, Zhao Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem Rev. 2015;115:7794-839. 

  10. Adv Mater BV Slaughter 21 3307 2009 10.1002/adma.200802106 Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenrative medicine. Adv Mater. 2009;21:3307-29. 

  11. Molecules PJ Kondiah 21 E1580 2016 10.3390/molecules21111580 Kondiah PJ, Choonara YE, Kondiah PP, Marimuthu T, Kumar P, du Toit LC, et al. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules. 2016;21:E1580. 

  12. J Biomater Sci Polym Ed S Deng 29 1643 2018 10.1080/09205063.2018.1481005 Deng S, Li X, Yang W, He K, Ye X. Injectable in situ cross-linking hyaluronic acid/carboxymethyl cellulose based hydrogels for drug release. J Biomater Sci Polym Ed. 2018;29:1643-55. 

  13. Carbohydr Polym M Lu 181 668 2018 10.1016/j.carbpol.2017.11.097 Lu M, Liu Y, Huang YC, Huang CJ, Tsai WB. Fabrication of photo-crosslinkable glycol chitosan hydrogel as a tissue adhesive. Carbohydr Polym. 2018;181:668-74. 

  14. Rev Chem Eng T Portnov 33 91 2017 10.1515/revce-2015-0074 Portnov T, Shulimzon TR, Zilberman M. Injectable hydrogel-based scaffolds for tissue engineering applications. Rev Chem Eng. 2017;33:91-107. 

  15. Biomacromolecules T Hozumi 19 288 2018 10.1021/acs.biomac.7b01133 Hozumi T, Kageyama T, Ohta S, Fukuda J, Ito T. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by Schiff’s base formation. Biomacromolecules. 2018;19:288-97. 

  16. ACS Biomater Sci Eng J Liao 4 1029 2018 10.1021/acsbiomaterials.7b00860 Liao J, Jia Y, Wang B, Shi K, Qian Z. Injectable hybrid poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) porous microspheres/alginate hydrogel cross-linked by calcium gluconate crystals deposited in the pores of microspheres improved skin wound healing. ACS Biomater Sci Eng. 2018;4:1029-36. 

  17. Bone Res M Liu 5 17014 2017 10.1038/boneres.2017.14 Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014. 

  18. J Appl Pharm Sci S Jain 3 139 2013 Jain S, Sandhu PS, Malvi R, Gupta B. Cellulose derivatives as thermoresponsive polymer: an overview. J Appl Pharm Sci. 2013;3:139-44. 

  19. Braz Dent J MF Goes 9 3 1998 Goes MF, Sinhoreti MA, Consani S, Silva MA. Morphological effect of the type, concentration and etching time of acid solutions on enamel and dentin surfaces. Braz Dent J. 1998;9:3-10. 

  20. Prog Polym Sci CKS Pillai 34 641 2009 10.1016/j.progpolymsci.2009.04.001 Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641-78. 

  21. Biomaterials YH Chen 33 1336 2012 10.1016/j.biomaterials.2011.10.048 Chen YH, Chung YC, Wang IJ, Young TH. Control of cell attachment on pH-responsive chitosan surface by precise adjustment of medium pH. Biomaterials. 2012;33:1336-42. 

  22. Journal of Vascular and Interventional Radiology Lihui Weng 22 10 1464-1470.e2 2011 10.1016/j.jvir.2011.06.010 Weng L, Le HC, Talaie R, Golzarian J. Bioresorbable hydrogel microspheres for transcatheter embolization: preparation and in vitro evaluation. J Vasc Interv Radiol. 2011;22:1464-1470.e2. 

  23. Carbohydr Polym W Zhang 186 82 2018 10.1016/j.carbpol.2018.01.008 Zhang W, Jin X, Li H, Zhang RR, Wu CW. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydr Polym. 2018;186:82-90. 

  24. Materials (Basel) R Parenteau-Bareil 3 1863 2010 10.3390/ma3031863 Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 2010;3:1863-87. 

  25. Sci Rep N Latifi 8 1047 2018 10.1038/s41598-017-18523-3 Latifi N, Asgari M, Vali H, Mongeau L. A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential soft tissue engineering applications. Sci Rep. 2018;8:1047. 

  26. Biol Pharm Bull M Kawase 20 708 1997 10.1248/bpb.20.708 Kawase M, Michibayashi N, Nakashima Y, Kurikawa N, Yagi K, Mizoguchi T. Application of glutaraldehyde-crosslinked chitosan as a scaffold for hepatocyte attachment. Biol Pharm Bull. 1997;20:708-10. 

  27. Biomaterials EM Noah 23 2855 2002 10.1016/S0142-9612(01)00412-4 Noah EM, Chen J, Jiao X, Heschel I, Pallua N. Impact of sterilization on the porous design and cell behavior in collagen sponges prepared for tissue engineering. Biomaterials. 2002;23:2855-61. 

  28. J Mater Chem X Geng 22 25130 2012 10.1039/c2jm34737g Geng X, Mo X, Fan L, Yin A, Fang J. Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)-acrylate for tissue engineering application. J Mater Chem. 2012;22:25130-9. 

  29. Biomaterials RG Payne 23 4373 2002 10.1016/S0142-9612(02)00185-0 Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials. 2002;23:4373-80. 

  30. Adv Mater JA Burdick 23 H41 2011 10.1002/adma.201003963 Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41-56. 

  31. Carbohydr Polym X Ma 179 100 2018 10.1016/j.carbpol.2017.09.071 Ma X, Xu T, Chen W, Qin H, Chi B, Ye Z. Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery. Carbohydr Polym. 2018;179:100-9. 

  32. 10.1016/j.colsurfb.2017.10.033 S V, A S, Annapoorna M, R J, Subramania I, Shantikumar V N, et al. Injectable deferoxamine nanoparticles loaded chitosan-hyaluronic acid coacervate hydrogel for therapeutic angiogenesis. Colloids Surf B Biointerfaces. 2018;161:129-38. 

  33. J Mater Chem B Y Han 5 3315 2017 10.1039/C7TB00571G Han Y, Li Y, Zeng Q, Li H, Peng J, Xu Y, et al. Injectable bioactive akermanite/alginate composite hydrogels for in situ skin tissue engineering. J Mater Chem B. 2017;5:3315-26. 

  34. Acta Biomater G Chan 9 9281 2013 10.1016/j.actbio.2013.08.002 Chan G, Mooney DJ. Ca2+ released from calcium alginate gels can promote inflammatory responses in vitro and in vivo. Acta Biomater. 2013;9:9281-91. 

  35. Eur Cell Mater D Mumcuoglu 35 242 2018 10.22203/eCM.v035a17 Mumcuoglu D, Fahmy-Garcia S, Ridwan Y, Nicke J, Farrell E, Kluijtmans SG, et al. Injectable BMP-2 delivery system based on collagen-derived microspheres and alginate induced bone formation in a time-and dose-dependent manner. Eur Cell Mater. 2018;35:242-54. 

  36. J Control Release K Wang 268 212 2017 10.1016/j.jconrel.2017.10.031 Wang K, Han Z. Injectable hydrogels for ophthalmic applications. J Control Release. 2017;268:212-24. 

  37. i-FACTOR™ Peptide enhanced bone graft, Westminster, Colorado USA. 2015. https://www.accessdata.fda.gov/cdrh_docs/pdf14/p140019d.pdf . Accessed 3 Dec 2015. 

  38. Prathamesh MK, April MK. Injectable hydrogels for cell delivery and tissue regeneration. https://www.sigmaaldrich.com/technical-documents/articles/materials-science/injectable-hydrogels.html . Accessed 1 Apr 2018. 

  39. Adv Sci (Weinh) A Hasan 2 1500122 2015 10.1002/advs.201500122 Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, et al. Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci (Weinh). 2015;2:1500122. 

  40. Acta Biomater SJ Bidarra 10 1646 2014 10.1016/j.actbio.2013.12.006 Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater. 2014;10:1646-62. 

  41. J Mater Chem B V Shalini 3 5511 2015 10.1039/C5TB00663E Shalini V, Sarah B, Ho-Man K, Hicham D, David W, Lakshmi S. Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel. J Mater Chem B. 2015;3:5511-22. 

  42. Sealant P. Coseal surgical sealant (CoSeal) 2011. www.accessdata.fda.gov/cdrh_docs/pdf/p010022b.pdf . Accessed 14 Dec 2001. 

  43. Semin Nucl Med GM Blake 31 28 2001 10.1053/snuc.2001.18742 Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28-49. 

  44. J Biosci Bioeng H Xu 106 515 2008 10.1263/jbb.106.515 Xu H, Othman SF, Magin RL. Monitoring tissue engineering using magnetic resonance imaging. J Biosci Bioeng. 2008;106:515-27. 

  45. Adv Healthc Mater MH Bakker 7 1701139 2018 10.1002/adhm.201701139 Bakker MH, Tseng CCS, Keizer HM, Seevinck PR, Janssen HM, Van Slochteren FJ, et al. MRI visualization of injectable ureidopyrimidinone hydrogelators by supramolecular contrast agent labeling. Adv Healthc Mater. 2018;7:1701139. 

  46. Tissue Eng Part C Methods M Gudur 18 935 2012 10.1089/ten.tec.2012.0180 Gudur M, Rao RR, Hsiao Y-S, Peterson AW, Deng CX, Stegemann JP. Noninvasive, quantitative, spatiotemporal characterization of mineralization in three-dimensional collagen hydrogels using high-resolution spectral ultrasound imaging. Tissue Eng Part C Methods. 2012;18:935-46. 

  47. Mol Pharm R Chakravarty 11 3777 2014 10.1021/mp500173s Chakravarty R, Hong H, Cai W. Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm. 2014;11:3777-97. 

  48. ACS Nano LL Lock 11 797 2017 10.1021/acsnano.6b07196 Lock LL, Li Y, Mao X, Chen H, Staedtke V, Bai R, et al. One-component supramolecular filament hydrogels as theranostic label-free magnetic resonance imaging agents. ACS Nano. 2017;11:797-805. 

  49. Ketcham R. X-ray Computer Tomography (CT) 2007. https://serc.carleton.edu/research_education/geochemsheets/techniques/CT.html . Accessed 6 Jun 2018. 

  50. Nat Rev Cancer R Weissleder 2 11 2002 10.1038/nrc701 Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer. 2002;2:11-8. 

  51. J Mater Chem B. K Lei 4 7793 2016 10.1039/C6TB02019D Lei K, Ma Q, Yu L, Ding J. Functional biomedical hydrogels for in vivo imaging. J Mater Chem B. 2016;4:7793-812. 

  52. Osteoporos Int J Tan 27 757 2016 10.1007/s00198-015-3230-y Tan J, Fu X, Sun CG, Liu C, Zhang XH, Cui YY, et al. A single CT-guided percutaneous intraosseous injection of thermosensitive simvastatin/poloxamer 407 hydrogel enhances vertebral bone formation in ovariectomized minipigs. Osteoporos Int. 2016;27:757-67. 

  53. ACS Appl Mater Interfaces A Sivashanmugam 9 42639 2017 10.1021/acsami.7b15845 Sivashanmugam A, Charoenlarp P, Deepthi S, Rajendran A, Nair SV, Iseki S, et al. Injectable shear-thinning CaSO4/FGF-18-incorporated Chitin-PLGA hydrogel enhances bone regeneration in mice cranial bone defect model. ACS Appl Mater Interfaces. 2017;9:42639-52. 

  54. J Nucl Med M Piert 42 1091 2001 Piert M, Zittel TT, Becker GA, Jahn M, Stahlschmidt A, Maier G, et al. Assessment of porcine bone metabolism by dynamic [18F]fluoride ion PET: correlation with bone histomorphometry. J Nucl Med. 2001;42:1091-100. 

  55. Phelps ME, Chatziioannou A, Cherry S, Gambhir S. Molecular imaging of biological processes from microPET in mice to PET in patients. Proc IEEE Int Symp Biomed Imaging. 2002;1-9. 

  56. Theranostics C Tondera 6 2114 2016 10.7150/thno.16614 Tondera C, Hauser S, Krüger-Genge A, Jung F, Neffe AT, Lendlein A, et al. Gelatin-based hydrogel degradation and tissue interaction in vivo: insights from multimodal preclinical imaging in immunocompetent nude mice. Theranostics. 2016;6:2114-28. 

  57. Tissue Eng Part C Methods. Y Talukdar 20 440 2014 10.1089/ten.tec.2013.0203 Talukdar Y, Avti P, Sun J, Sitharaman B. Multimodal ultrasound-photoacoustic imaging of tissue engineering scaffolds and blood oxygen saturation in and around the scaffolds. Tissue Eng Part C Methods. 2014;20:440-9. 

  58. Biomaterials J Yu 34 2701 2013 10.1016/j.biomaterials.2013.01.036 Yu J, Takanari K, Hong Y, Lee KW, Amoroso NJ, Wang Y, et al. Non-invasive characterization of polyurethane-based tissue constructs in a rat abdominal repair model using high frequency ultrasound elasticity imaging. Biomaterials. 2013;34:2701-9. 

  59. J Nanomater Y Chen 939821 7 2012 Chen Y, Li S, Li X, Zhang Y, Huang Z, Feng Q, et al. Noninvasive evaluation of injectable chitosan/nano-hydroxyapatite/collagen scaffold via ultrasound. J Nanomater. 2012;939821:7. 

  60. Tissue Eng Part B Rev AM Leferink 22 265 2016 10.1089/ten.teb.2015.0340 Leferink AM, van Blitterswijk CA, Moroni L. Methods of monitoring cell fate and tissue growth in three-dimensional scaffold-based strategies for in vitro tissue engineering. Tissue Eng Part B Rev. 2016;22:265-83. 

  61. DW McRobbie 30 2006 10.1017/CBO9780511545405.003 MRI from picture to proton McRobbie DW, Moore EA, Graves MJ, Prince MR. MRI from picture to proton. New York: Cambridge University Press; 2006. p. 30-42. 

  62. Tissue Eng Part B Rev M Kotecha 19 470 2013 10.1089/ten.teb.2012.0755 Kotecha M, Klatt D, Magin RL. Monitoring cartilage tissue engineering using magnetic resonance spectroscopy, imaging, and elastography. Tissue Eng Part B Rev. 2013;19:470-84. 

  63. Biomaterials J Xu 33 6965 2012 10.1016/j.biomaterials.2012.06.010 Xu J, Chen Y, Yue Y, Sun J, Cui L. Reconstruction of epidural fat with engineered adipose tissue from adipose derived stem cells and PLGA in the rabbit dorsal laminectomy model. Biomaterials. 2012;33:6965-73. 

  64. NMR Biomed M Beaumont 23 48 2010 10.1002/nbm.1425 Beaumont M, DuVal MG, Loai Y, Farhat WA, Sándor GK, Cheng HLM. Monitoring angiogenesis in soft-tissue engineered constructs for calvarium bone regeneration: an in vivo longitudinal DCE-MRI study. NMR Biomed. 2010;23:48-55. 

  65. Biomaterials E Bible 33 2858 2012 10.1016/j.biomaterials.2011.12.033 Bible E, Dell’Acqua F, Solanky B, Balducci A, Crapo PM, Badylak SF, et al. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by19F- and diffusion-MRI. Biomaterials. 2012;33:2858-71. 

  66. Tissue Eng Part A Y-S Hsueh 23 185 2017 10.1089/ten.tea.2016.0290 Hsueh Y-S, Chen Y-S, Tai H-C, Mestak O, Chao S-C, Chen Y-Y, et al. Laminin-alginate beads as preadipocyte carriers to enhance adipogenesis in vitro and in vivo. Tissue Eng Part A. 2017;23:185-94. 

  67. PLoS ONE E Roeder 9 e98451 2014 10.1371/journal.pone.0098451 Roeder E, Henrionnet C, Goebel JC, Gambier N, Beuf O, Grenier D, et al. Dose-response of superparamagnetic iron oxide labeling on mesenchymal stem cells chondrogenic differentiation: a multi-scale in vitro study. PLoS ONE. 2014;9:e98451. 

  68. Theranostics ME Mertens 4 1002 2014 10.7150/thno.8763 Mertens ME, Frese J, Bölükbas DA, Hrdlicka L, Golombek S, Koch S, et al. FMN-coated fluorescent USPIO for cell labeling and non-invasive MR imaging in tissue engineering. Theranostics. 2014;4:1002-13. 

  69. Tissue Eng Part C Methods R Dittmar 18 198 2012 10.1089/ten.tec.2011.0334 Dittmar R, Potier E, van Zandvoort M, Ito K. Assessment of cell viability in three-dimensional scaffolds using cellular auto-fluorescence. Tissue Eng Part C Methods. 2012;18:198-204. 

  70. FASEB J D Pan 25 875 2011 10.1096/fj.10-171728 Pan D, Pramanik M, Senpan A, Allen JS, Zhang H, Wickline SA, et al. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 2011;25:875-82. 

  71. Mater Today X Cai 16 67 2013 10.1016/j.mattod.2013.03.007 Cai X, Zhang YS, Xia Y, Wang LV. Photoacoustic microscopy in tissue engineering. Mater Today. 2013;16:67-77. 

  72. J Biophotonics X Liang 2 643 2009 10.1002/jbio.200910048 Liang X, Graf BW, Boppart SA. Imaging engineered tissues using structural and functional optical coherence tomography. J Biophotonics. 2009;2:643-55. 

  73. Adv Funct Mater C Tondera 27 1605189 2017 10.1002/adfm.201605189 Tondera C, Wieduwild R, Röder E, Werner C, Zhang Y, Pietzsch J. In vivo examination of an injectable hydrogel system crosslinked by peptide-oligosaccharide interaction in immunocompetent nude mice. Adv Funct Mater. 2017;27:1605189. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로