$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Accelerated Curing and Enhanced Material Properties of Conductive Polymer Nanocomposites by Joule Heating 원문보기

Materials, v.11 no.9, 2018년, pp.1775 -   

Jang, Sung-Hwan (Civil and Coastal Engineering, School of Engineering, University of Plymouth, Plymouth, Devon PL4 8AA, UK) ,  Kim, Donghak (sung-hwan.jang@plymouth.ac.uk) ,  Park, Yong-Lae (Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea)

Abstract AI-Helper 아이콘AI-Helper

Joule heating is useful for fast and reliable manufacturing of conductive composite materials. In this study, we investigated the influence of Joule heating on curing conditions and material properties of polymer-based conductive composite materials consisting of carbon nanotubes (CNTs) and polydime...

주제어

참고문헌 (30)

  1. 1. Kim K.H. Vural M. Islam M.F. Single-Walled Carbon Nanotube Aerogel-Based Elastic Conductors Adv. Mater. 2011 23 2865 2869 10.1002/adma.201100310 21495087 

  2. 2. Qiu J.J. Zhang C. Wang B. Liang R. Carbon nanotube integrated multifunctional multiscale composites Nanotechnology 2007 18 275708 10.1088/0957-4484/18/27/275708 

  3. 3. Slobodian P. Riha P. Benlikaya R. Svoboda P. Petras D. A Flexible Multifunctional Sensor Based on Carbon Nanotube/Polyurethane Composite IEEE Sens. J. 2013 13 4045 4048 10.1109/JSEN.2013.2272098 

  4. 4. Park S.H. Bandaru P.R. Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages Polymer 2010 51 5071 5077 10.1016/j.polymer.2010.08.063 

  5. 5. Lee G.W. Park M. Kim J. Lee J.I. Yoon H.G. Enhanced thermal conductivity of polymer composites filled with hybrid filler Compos. Part. A Appl. Sci. Manuf. 2006 37 727 734 10.1016/j.compositesa.2005.07.006 

  6. 6. Shi Z.Q. Radwan M. Kirihara S. Miyamoto Y. Jin Z.H. Enhanced thermal conductivity of polymer composites filled with three-dimensional brushlike AlN nanowhiskers Appl. Phys. Lett. 2009 95 224104 10.1063/1.3271028 

  7. 7. Ishida H. Rimdusit S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine Thermochim. Acta 1998 320 177 186 10.1016/S0040-6031(98)00463-8 

  8. 8. Jang S.H. Na S.H. Park Y.L. Magnetically Assisted Bilayer Composites for Soft Bending Actuators Materials 2017 10 646 10.3390/ma10060646 28773007 

  9. 9. Jang S.H. Park Y.L. Yin H. Influence of Coalescence on the Anisotropic Mechanical and Electrical Properties of Nickel Powder/Polydimethylsiloxane Composites Materials 2016 9 239 10.3390/ma9040239 28773365 

  10. 10. Jang S.H. Yin H.M. Effect of aligned ferromagnetic particles on strain sensitivity of multi-walled carbon nanotube/polydimethylsiloxane sensors Appl. Phys. Lett. 2015 106 141903 10.1063/1.4917070 

  11. 11. Moisala A. Li Q. Kinloch I.A. Windle A.H. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites Compos. Sci. Technol. 2006 66 1285 1288 10.1016/j.compscitech.2005.10.016 

  12. 12. Wang K. Chizari K. Liu Y. Janowska I. Moldovan S.M. Ersen O. Bonnefont A. Savinova E.R. Nguyen L.D. Pham-Huu C. Catalytic synthesis of a high aspect ratio carbon nanotubes bridging carbon felt composite with improved electrical conductivity and effective surface area Appl. Catal. A Gen. 2011 392 238 247 10.1016/j.apcata.2010.11.014 

  13. 13. Esmizadeh E. Yousefi A.A. Naderi G. Effect of type and aspect ratio of different carbon nanotubes on cure behavior of epoxy-based nanocomposites Iran. Polym. J. 2015 24 1 12 10.1007/s13726-014-0281-4 

  14. 14. Bayerl T. Duhovic M. Mitschang P. Bhattacharyya D. The heating of polymer composites by electromagnetic induction—A review Compos. Part A Appl. Sci. Manuf. 2014 57 27 40 10.1016/j.compositesa.2013.10.024 

  15. 15. Chung D.D.L. Self-heating structural materials Smart Mater. Struct. 2004 13 562 565 10.1088/0964-1726/13/3/015 

  16. 16. Prolongo S.G. Moriche R. Del Rosario G. Jimenez-Suarez A. Prolongo M.G. Urena A. Joule effect self-heating of epoxy composites reinforced with graphitic nanofillers J. Polym. Res. 2016 23 189 10.1007/s10965-016-1092-4 

  17. 17. Mas B. Fernandez-Blazquez J.P. Duval J. Bunyan H. Vilatela J.J. Thermoset curing through Joule heating of nanocarbons for composite manufacture, repair and soldering Carbon 2013 63 523 529 10.1016/j.carbon.2013.07.029 

  18. 18. Kong Y.N. Wang P.M. Liu S.H. Zhao G.R. Peng Y. SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing Materials 2016 9 733 10.3390/ma9090733 28773854 

  19. 19. Ragab T. Basaran C. Joule heating in single-walled carbon nanotubes J. Appl. Phys. 2009 106 733 10.1063/1.3204971 

  20. 20. Ragab T. Basaran C. Semi-classical transport for predicting joule heating in carbon nanotubes Phys. Lett. A 2010 374 2475 2479 10.1016/j.physleta.2010.04.009 

  21. 21. Gautreau P. Ragab T. Basaran C. Hot phonons contribution to Joule heating in single-walled carbon nanotubes J. Appl. Phys. 2012 112 103527 10.1063/1.4766901 

  22. 22. Jang S.H. Yin H.M. Effective electrical conductivity of carbon nanotube-polymer composites: A simplified model and its validation Mater. Res. Express 2015 2 045602 10.1088/2053-1591/2/4/045602 

  23. 23. Song K.A. Zhang Y.Y. Meng J.S. Green E.C. Tajaddod N. Li H. Minus M.L. Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing-Structure-Performance Relationship Materials 2013 6 2543 2577 10.3390/ma6062543 28809290 

  24. 24. Sandler J. Shaffer M.S.P. Prasse T. Bauhofer W. Schulte K. Windle A.H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties Polymer 1999 40 5967 5971 10.1016/S0032-3861(99)00166-4 

  25. 25. Chu K. Lee S.C. Lee S. Kim D. Moon C. Park S.H. Smart conducting polymer composites having zero temperature coefficient of resistance Nanoscale 2015 7 471 478 10.1039/C4NR04489D 25351278 

  26. 26. Xiang Z.D. Chen T. Li Z.M. Bian X.C. Negative Temperature Coefficient of Resistivity in Lightweight Conductive Carbon Nanotube/Polymer Composites Macromol. Mater. Eng. 2009 294 91 95 10.1002/mame.200800273 

  27. 27. Chu K. Kim D. Sohn Y. Lee S. Moon C. Park S. Electrical and Thermal Properties of Carbon-Nanotube Composite for Flexible Electric Heating-Unit Applications IEEE Electron Device Lett. 2013 34 668 670 10.1109/LED.2013.2249493 

  28. 28. Woo J.S. Han J.T. Jung S. Jang J.I. Kim H.Y. Jeong H.J. Jeong S.Y. Baeg K.J. Lee G.W. Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes Sci. Rep. 2014 4 4804 10.1038/srep04804 24763208 

  29. 29. Wang Z.X. Volinsky A.A. Gallant N.D. Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measured by Custom-Built Compression Instrument J. Appl. Polym. Sci. 2014 131 22 10.1002/app.41050 

  30. 30. Lv J. Gong Z.J. He Z.K. Yang J. Chen Y.Q. Tang C.Y. Liu Y. Fan M.K. Lau W.M. 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation J. Mater. Chem. A 2017 5 12435 12444 10.1039/C7TA02202F 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로