$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High-Aspect Ratio β -Ga 2 O 3 Nanorods via Hydrothermal Synthesis 원문보기

Nanomaterials, v.8 no.8, 2018년, pp.594 -   

Bae, Hyun Jeong (Department of Materials Engineering, Korea Aerospace University, Goyang 10540, Korea) ,  Yoo, Tae Hee (baehj83@gmail.com (H.J.B.)) ,  Yoon, Youngbin (kauyootaehee@gmail.com (T.H.Y.)) ,  Lee, In Gyu (ybyoon93@gmail.com (Y.Y.)) ,  Kim, Jong Pil (leeig@kau.ac.kr (I.G.L.)) ,  Cho, Byung Jin (Department of Materials Engineering, Korea Aerospace University, Goyang 10540, Korea) ,  Hwang, Wan Sik (baehj83@gmail.com (H.J.B.))

Abstract AI-Helper 아이콘AI-Helper

High-aspect ratio β-Ga2O3 nanorods consisting of prism-like crystals were formed using gallium oxyhydroxide and ammonia hydroxide via a hydrothermal synthesis followed by the subsequent calcination process. The formation of high-aspect ratio β-Ga2O3 nanorods was attributed to the oriented ...

주제어

참고문헌 (51)

  1. 1. Higashiwaki M. Sasaki K. Kuramata A. Masui T. Yamakoshi S. Depletion-mode Ga 2 O 3 metal-oxide-semiconductor field-effect transistors on β -Ga 2 O 3 (010) substrates and temperature dependence of their device characteristics Appl. Phys. Lett. 2012 100 013504 10.1063/1.3674287 

  2. 2. Sasaki K. Kuramata A. Masui T. Víllora E.G. Shimamura K. Yamakoshi S. Device-Quality β -Ga 2 O 3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy Appl. Phys. Exp. 2012 5 035502 10.1143/APEX.5.035502 

  3. 3. Zhou H. Maize K. Noh J. Shakouri A. Ye P.D. Thermodynamic Studies of β -Ga 2 O 3 Nanomembrane Field-Effect Transistors on a Sapphire Substrate ACS Omega 2017 2 7723 7729 10.1021/acsomega.7b01313 

  4. 4. Higashiwaki M. Sasaki K. Murakami H. Kumagai Y. Koukitu A. Kuramata A. Masui T. Yamakoshi S. Recent progress in Ga 2 O 3 power devices Semicond. Sci. Technol. 2016 31 034001 10.1088/0268-1242/31/3/034001 

  5. 5. Li X. Zhen X. Meng S. Xian J. Shao Y. Fu X. Li D. Structuring β -Ga 2 O 3 Photonic Crystal Photocatalyst for Efficient Degradation of Organic Pollutants Environ. Sci. Technol. 2013 47 9911 9917 10.1021/es401479k 23906280 

  6. 6. Liu Z. Yamazaki T. Shen Y. Kikuta T. Nakatani N. Li Y. O 2 and CO sensing of Ga 2 O 3 multiple nanowire gas sensors Sens. Actuator B Chem. 2008 129 666 670 10.1016/j.snb.2007.09.055 

  7. 7. Kim J. Mastro M.A. Tadjer M.J. Kim J. Quasi-Two-Dimensional h-BN/ β -Ga 2 O 3 Heterostructure Metal-Insulator-Semiconductor Field-Effect Transistor ACS Appl. Mater. Interfaces 2017 9 21322 21327 10.1021/acsami.7b04374 28560867 

  8. 8. Kalygina V.M. Zarubin A.N. Nayden Y.P. Novikov V.A. Petrova Y.S. Tolbanov O.P. Tyazhev A.V. Yaskevich T.M. Ga 2 O 3 Films Formed by Electrochemical Oxidation Semiconductors 2011 45 1097 1102 10.1134/S1063782611080112 

  9. 9. Jangir R. Ganguli T. Tiwari P. Porwal S. Srivastava H. Rai S.K. Khattak B.Q. Oak S.M. Synthesis and characterization of β -Ga 2 O 3 nanostructures grown on GaAs substrates Appl. Surf. Sci. 2011 257 9323 9328 10.1016/j.apsusc.2011.05.039 

  10. 10. Wang F. Han Z. Tong L. Fabrication and characterization of β -Ga 2 O 3 optical nanowires Physica E 2005 30 150 154 10.1016/j.physe.2005.08.001 

  11. 11. Hwang W.S. Verma A. Peelaers H. Protasenko V. Rouvimov S. Xing H. Seabaugh A. Haensch W. Walle C.V. Galazka Z. High-voltage field effect transistors with wide-bandgap β -Ga 2 O 3 nanomembranes Appl. Phys. Lett. 2014 104 203111 10.1063/1.4879800 

  12. 12. Kwon Y.B. Lee G.Y. Oh S.Y. Kim J.H. Pearton S.J. Ren F. Tuning the thickness of exfoliated quasi-two-dimensional β -Ga 2 O 3 flakes by plasma etching Appl. Phys. Lett. 2017 110 131901 10.1063/1.4979028 

  13. 13. Feng W. Wang X. Zhang J. Wang L. Zheng W. Hu P. Cao W. Yang B. Synthesis of two-dimensional β -Ga 2 O 3 nanosheets for high-performance solar blind photodetectors J. Mater. Chem. C 2014 2 3254 10.1039/C3TC31899K 

  14. 14. Yoon Y.B. Han K.I. Kim B.H. Lee I.G. Kim Y.H. Kim J.P. Hwang W.S. Formation of β -Ga 2 O 3 nanofibers of sub-50 nm diameter synthesized by electrospinning method Thin Solid Films 2018 1 358 362 10.1016/j.tsf.2017.11.010 

  15. 15. Hailin M. Yan L. One-Step Preparation of β -Ga 2 O 3 Nanomaterial and Research the Electrical Transport Properties at High Temperature Rare Metal. Mater. Eng. 2013 42 2245 2247 10.1016/S1875-5372(14)60030-8 

  16. 16. Khan A. Jadwisienczak W.M. Kordesch M.E. One-step preparation of ultra-wide β -Ga 2 O 3 microbelts and their photoluminescence study Physica E 2006 35 207 211 10.1016/j.physe.2006.07.019 

  17. 17. Oh S.Y. Kim J.H. Ren F. Peartonc S.J. Kim J.H. Quasi-two-dimensional β -gallium oxide solar-blind photodetectors with ultrahigh responsivity J. Mater. Chem. C 2016 4 9245 9250 10.1039/C6TC02467J 

  18. 18. Reddy L.S. Ko Y.H. Yu J.S. Hydrothermal Synthesis and Photocatalytic Property of β -Ga 2 O 3 Nanorods Nanoscale Res. Lett. 2015 10 364 10.1186/s11671-015-1070-5 26377217 

  19. 19. Sharma S. Sunkara M.K. Direct Synthesis of Gallium Oxide Tubes, Nanowires, and Nanopaintbrushes J. Am. Chem. Soc. 2002 124 12288 12293 10.1021/ja027086b 12371872 

  20. 20. Kokubun Y. Miura K. Endo F. Nakagomi S. Sol-gel prepared β -Ga 2 O 3 thin films for ultraviolet photodetectors Appl. Phys. Lett. 2007 90 031912 10.1063/1.2432946 

  21. 21. Kang B.K. Mang S.R. Song K.M. Lee K.S. Yoon D.H. Hydrothermal synthesis and characterization of uniform β -Ga 2 O 3 hollow nanostructures by carbon nanospheres J. Ceram. Process. Res. 2014 15 200 203 

  22. 22. Zhang J. Liu Z. Lin C. Lin J. A simple method to synthesize β -Ga 2 O 3 nanorods and their photoluminescence properties J. Cryst. Growth 2005 280 99 106 10.1016/j.jcrysgro.2005.02.060 

  23. 23. EL-Sayed E.I. Al-Ghamdi A.A. Al-Heniti S. Al-Marzouki F. El-Tantawy F. Synthesis of ultrafine β -Ga 2 O 3 nanopowder via hydrothermal approach: A strong UV “excimer-like” emission Mater. Lett. 2011 65 317 321 10.1016/j.matlet.2010.10.007 

  24. 24. Quan Y. Fang D. Zhang X. Liu S. Huang K. Synthesis and characterization of gallium oxide nanowires via a hydrothermal method Mater. Chem. Phys. 2010 121 142 146 10.1016/j.matchemphys.2010.01.009 

  25. 25. Sun M. Li D. Zhang W. Fu X. Shao Y. Li W. Xiao G. He Y. Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds Nanotechnology 2010 21 355601 10.1088/0957-4484/21/35/355601 20683143 

  26. 26. Zhao Y. Frost R.L. Yang J. Martens W.N. Size and Morphology Control of Gallium Oxide Hydroxide GaO(OH), Nano- to Micro-Sized Particles by Soft-Chemistry Route without Surfactant J. Phys. Chem. C 2008 112 3568 3579 10.1021/jp710545p 

  27. 27. Kumar S. Tessarek C. Sarau G. Christiansen S. Singh R. Self-Catalytic Growth of β -Ga 2 O 3 Nanostructures by Chemical Vapor Deposition Adv. Eng. Mater. 2015 17 709 715 10.1002/adem.201400289 

  28. 28. Hu J.Q. Li Q. Meng X.M. Lee C.S. Lee S.T. Synthesis of β -Ga 2 O 3 Nanowires by Laser Ablation J. Phys. Chem. B 2002 106 9536 9539 10.1021/jp020734t 

  29. 29. Zhao W. Yang Y. Hao R. Liu F. Wang Y. Tan M. Tang J. Ren D. Zhao D. Synthesis of mesoporous β -Ga 2 O 3 nanorods using PEG as template: Preparation, characterization and photocatalytic properties J. Hazard. Mater. 2011 192 1548 1554 10.1016/j.jhazmat.2011.06.073 21767910 

  30. 30. Girija K. Thirumalairajan S. Mangalaraj D. Morphology controllable synthesis of parallely arranged single-crystalline β -Ga 2 O 3 nanorods for photocatalytic and antimicrobial activities Chem. Eng. J. 2014 236 181 190 10.1016/j.cej.2013.09.088 

  31. 31. Huang C.C. Yeh C.S. GaOOH, and β - and γ-Ga 2 O 3 nanowires: Preparation and photoluminescence New J. Chem. 2010 34 103 107 10.1039/B9NJ00392D 

  32. 32. Wu S. Zhang J. Shi L. Tang S. Li Y. Jiang L. Cui Q. Template-free synthesis of α -GaOOH hyperbranched nanoarchitectures via crystal splitting and their optical properties RSC Adv. 2014 4 8209 8215 10.1039/c3ra46931j 

  33. 33. Qian H.S. Gunawan P. Zhang Y.X. Lin G.F. Zheng J.W. Xu R. Template-Free Synthesis of Highly Uniform α -GaOOH Spindles and Conversion to α -Ga 2 O 3 and β -Ga 2 O 3 Cryst. Growth Des. 2008 8 1282 1287 10.1021/cg701004w 

  34. 34. Sat T. Nakamura T. Studies of the crystallisation of gallium hydroxide precipitated from hydrochloric acid solutions by various alkalis J. Chem. Technol. Biotechnol. 1982 32 469 475 10.1002/jctb.5030320306 

  35. 35. Guo D. Xie G. Luo J. Mechanical properties of nanoparticles: Basics and applications J. Phys. D Appl. Phys. 2014 47 013001 10.1088/0022-3727/47/1/013001 

  36. 36. Eduardo J.H.L. Ribeiro C. Longo E. Leite E.R. Oriented Attachment: An Effective Mechanism in the Formation of Anisotropic Nanocrystals J. Phys. Chem. B 2005 109 20842 20846 16853702 

  37. 37. Markov I.V. Crystal Growth for Beginners 2nd ed. World Scientific Publishing Singapore 2003 15 978-981-4486-90-3 

  38. 38. Yang W. Xu Y. Tang Y. Wang C. Hu Y. Huang L. Liu J. Luo J. Guo H. Chen Y. Three-dimensional self-branching anatase TiO 2 nanorods: Morphology control, growth mechanism and dye-sensitized solar cell application J. Mater. Chem. A 2014 2 16030 16038 10.1039/C4TA02761B 

  39. 39. Kang B.K. Lim G.H. Lim B.K. Yoon D.H. Synthesis and Characterization of Monodispersed β -Ga 2 O 3 Nanospheres via Morphology Controlled Ga 4 (OH) 10 SO 4 Precursors J. Alloys Compd. 2016 675 57 63 10.1016/j.jallcom.2016.03.094 

  40. 40. Liu X. Qiu G. Zhao Y. Zhang N. Yi R. Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods J. Alloys Compd. 2007 439 275 278 10.1016/j.jallcom.2006.08.062 

  41. 41. Xu X. Huang K. Bi K. Liang C. Lin S. Wang W.J. Yang T.Z. Liu J. Fan D.Y. Yang H.J. Controlled fabrication of α -GaOOH with a novel needle-like submicron tubular structure and its enhanced photocatalytic performance J. Alloys Compd. 2015 644 485 490 10.1016/j.jallcom.2015.03.088 

  42. 42. Li G. Peng C. Li C. Yang P. Hou Z. Fan Y. Cheng Z. Lin J. Shape-Controllable Synthesis and Morphology-Dependent Luminescence Properties of GaOOH:Dy 3+ and β -Ga 2 O 3 :Dy 3+ Inorg. Chem. 2010 49 1449 1457 10.1021/ic901682x 20092324 

  43. 43. Rambabu U. Munirathnam N.R. Prakash T.L. Vengalrao B. Buddhudu S. Synthesis and characterization of morphologically different high purity gallium oxide nanopowders J. Mater. Sci. 2007 42 9262 9266 10.1007/s10853-007-1869-2 

  44. 44. Girija K. Thirumalairajan S. Mastelaro V.R. Mangalaraj D. Photocatalytic degradation of organic pollutants by shape selective synthesis of β -Ga 2 O 3 microspheres constituted by nanospheres for environmental remediation J. Mater. Chem. A 2015 3 2617 2627 10.1039/C4TA05295A 

  45. 45. Yang J. Zhao Y. Frost R.L. Infrared and infrared emission spectroscopy of gallium oxide α -GaO(OH) nanostructures Spectrochim. Acta A 2009 74 398 403 10.1016/j.saa.2009.06.032 19577510 

  46. 46. Tas A.C. Majewski P.J. Aldinger F. Synthesis of Gallium Oxide Hydroxide Crystals in Aqueous Solutions with or without Urea and Their Calcination Behavior J. Am. Ceram. Soc. 2002 85 1421 1429 10.1111/j.1151-2916.2002.tb00291.x 

  47. 47. Krehula S. Ristic M. Kubuki S. Iida Y. Fabián M. Music S. The formation and microstructural properties of uniform α -GaOOH particles and their calcination products J. Alloys Compd. 2015 620 217 227 10.1016/j.jallcom.2014.09.134 

  48. 48. Hill R.J. Crystal structure refinement and electron density distribution in diaspore Phys. Chem. Min. 1979 5 179 200 10.1007/BF00307552 

  49. 49. Sasaki K. Higashiwaki M. Kuramata A. Masui T. Yamakoshi S. Si-Ion Implantation Doping in β -Ga 2 O 3 and Its Application to Fabrication of Low-Resistance Ohmic Contacts Appl. Phys. Express 2013 6 086502 10.7567/APEX.6.086502 

  50. 50. Zhou W. Xia C. Sai Q. Zhang H. Controlling n-type conductivity of β -Ga 2 O 3 by Nb doping Appl. Phys. Lett. 2017 111 242103 10.1063/1.4994263 

  51. 51. Zeng K. Wallace J.S. Heimburger C. Sasaki K. Kiramata A. Masui T. Gardella J.A. Jr. Singisetti U. Ga 2 O 3 MOSFETs using spin-on-glass source/drain doping technology IEEE Electron Device Lett. 2017 38 513 10.1109/LED.2017.2675544 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로