$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment 원문보기

Stem cells international, v.2018, 2018년, pp.5416923 -   

Phi, Lan Thi Hanh (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea) ,  Sari, Ita Novita (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea) ,  Yang, Ying-Gui (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea) ,  Lee, Sang-Hyun (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea) ,  Jun, Nayoung (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea) ,  Kim, Kwang Seock (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea) ,  Lee, Yun Kyung (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea) ,  Kwon, Hyog Young (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the c...

참고문헌 (226)

  1. 1 Siegel R. Naishadham D. Jemal A. Cancer statistics, 2013 CA: a Cancer Journal for Clinicians 2013 63 1 11 30 10.3322/caac.21166 2-s2.0-84872967522 23335087 

  2. 2 Hanahan D. Weinberg R. A. Hallmarks of cancer: the next generation Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 2-s2.0-79952284127 21376230 

  3. 3 You Y. N. Lakhani V. T. Wells S. A. Jr. The role of prophylactic surgery in cancer prevention World Journal of Surgery 2007 31 3 450 464 10.1007/s00268-006-0616-1 2-s2.0-33847651451 17308850 

  4. 4 Putzer B. M. Solanki M. Herchenroder O. Advances in cancer stem cell targeting: how to strike the evil at its root Advanced Drug Delivery Reviews 2017 120 89 107 10.1016/j.addr.2017.07.013 2-s2.0-85025084228 28736304 

  5. 5 Luqmani Y. A. Mechanisms of drug resistance in cancer chemotherapy Medical Principles and Practice 2005 14 1 35 48 10.1159/000086183 16103712 

  6. 6 Reid P. A. Wilson P. Li Y. Marcu L. G. Bezak E. Current understanding of cancer stem cells: review of their radiobiology and role in head and neck cancers Head & Neck 2017 39 9 1920 1932 10.1002/hed.24848 2-s2.0-85021335732 28644558 

  7. 7 Tredan O. Galmarini C. M. Patel K. Tannock I. F. Drug resistance and the solid tumor microenvironment Journal of the National Cancer Institute 2007 99 19 1441 1454 10.1093/jnci/djm135 2-s2.0-35148881028 17895480 

  8. 8 Senthebane D. A. Rowe A. Thomford N. E. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer International Journal of Molecular Sciences 2017 18 7 10.3390/ijms18071586 2-s2.0-85025811160 28754000 

  9. 9 Fesler A. Guo S. Liu H. Wu N. Ju J. Overcoming chemoresistance in cancer stem cells with the help of microRNAs in colorectal cancer Epigenomics 2017 9 6 793 796 10.2217/epi-2017-0041 2-s2.0-85020786921 28517961 

  10. 10 Di Fiore R. Drago-Ferrante R. Pentimalli F. MicroRNA-29b-1 impairs in vitro cell proliferation, self‑renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells International Journal of Oncology 2014 45 5 2013 2023 10.3892/ijo.2014.2618 2-s2.0-84954358750 25174983 

  11. 11 Chen D. Wu M. Li Y. Targeting BMI1 + cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma Cell Stem Cell 2017 20 5 621 634.e6 10.1016/j.stem.2017.02.003 2-s2.0-85014582596 28285905 

  12. 12 Visvader J. E. Lindeman G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions Nature Reviews Cancer 2008 8 10 755 768 10.1038/nrc2499 2-s2.0-52549087785 18784658 

  13. 13 Alison M. R. Lim S. M. Nicholson L. J. Cancer stem cells: problems for therapy? The Journal of Pathology 2011 223 2 147 161 10.1002/path.2793 2-s2.0-78650035864 21125672 

  14. 14 Dean M. Fojo T. Bates S. Tumour stem cells and drug resistance Nature Reviews Cancer 2005 5 4 275 284 10.1038/nrc1590 2-s2.0-16844368698 15803154 

  15. 15 Singh A. Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer Oncogene 2010 29 34 4741 4751 10.1038/onc.2010.215 2-s2.0-77956178360 20531305 

  16. 16 Kiyohara M. H. Dillard C. Tsui J. EMP2 is a novel therapeutic target for endometrial cancer stem cells Oncogene 2017 36 42 5793 5807 10.1038/onc.2017.142 2-s2.0-85031895567 28604744 

  17. 17 Chen J. Li Y. Yu T. S. A restricted cell population propagates glioblastoma growth after chemotherapy Nature 2012 488 7412 522 526 10.1038/nature11287 2-s2.0-84865203983 22854781 

  18. 18 Fang D. Kitamura H. Cancer stem cells and epithelial–mesenchymal transition in urothelial carcinoma: possible pathways and potential therapeutic approaches International Journal of Urology 2018 25 1 7 17 10.1111/iju.13404 2-s2.0-85026378543 28697535 

  19. 19 Cojoc M. Mäbert K. Muders M. H. Dubrovska A. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms Seminars in Cancer Biology 2015 31 16 27 10.1016/j.semcancer.2014.06.004 2-s2.0-84923248130 24956577 

  20. 20 Shlush L. I. Mitchell A. Heisler L. Tracing the origins of relapse in acute myeloid leukaemia to stem cells Nature 2017 547 7661 104 108 10.1038/nature22993 2-s2.0-85022223271 28658204 

  21. 21 Pattabiraman D. R. Weinberg R. A. Tackling the cancer stem cells — what challenges do they pose? Nature Reviews Drug Discovery 2014 13 7 497 512 10.1038/nrd4253 2-s2.0-84903768676 24981363 

  22. 22 Yang Z. J. Wechsler-Reya R. J. Hit ‘em where they live: targeting the cancer stem cell niche Cancer Cell 2007 11 1 3 5 10.1016/j.ccr.2006.12.007 2-s2.0-33846003811 17222787 

  23. 23 Valent P. Bonnet D. de Maria R. Cancer stem cell definitions and terminology: the devil is in the details Nature Reviews Cancer 2012 12 11 767 775 10.1038/nrc3368 2-s2.0-84867878045 23051844 

  24. 24 Peitzsch C. Kurth I. Kunz-Schughart L. Baumann M. Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance Radiotherapy and Oncology 2013 108 3 378 387 10.1016/j.radonc.2013.06.003 2-s2.0-84887019122 23830195 

  25. 25 Bonnet D. Dick J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell Nature Medicine 1997 3 7 730 7 10.1038/nm0797-730 2-s2.0-0030789242 9212098 

  26. 26 Joosse S. A. Pantel K. Biologic challenges in the detection of circulating tumor cells Cancer Research 2013 73 1 8 11 10.1158/0008-5472.CAN-12-3422 2-s2.0-84871990259 23271724 

  27. 27 Al-Hajj M. Wicha M. S. Benito-Hernandez A. Morrison S. J. Clarke M. F. Prospective identification of tumorigenic breast cancer cells Proceedings of the National Academy of Sciences of the United States of America 2003 100 7 3983 3988 10.1073/pnas.0530291100 2-s2.0-0037388204 12629218 

  28. 28 Ignatova T. N. Kukekov V. G. Laywell E. D. Suslov O. N. Vrionis F. D. Steindler D. A. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro Glia 2002 39 3 193 206 10.1002/glia.10094 2-s2.0-0036737914 12203386 

  29. 29 Schatton T. Murphy G. F. Frank N. Y. Identification of cells initiating human melanomas Nature 2008 451 7176 345 349 10.1038/nature06489 2-s2.0-38349165576 18202660 

  30. 30 Singh S. K. Clarke I. D. Terasaki M. Identification of a cancer stem cell in human brain tumors Cancer Research 2003 63 18 5821 5828 14522905 

  31. 31 Eramo A. Lotti F. Sette G. Identification and expansion of the tumorigenic lung cancer stem cell population Cell Death & Differentiation 2008 15 3 504 514 10.1038/sj.cdd.4402283 2-s2.0-39449088496 18049477 

  32. 32 Yang Z. F. Ho D. W. Ng M. N. Significance of CD90 + cancer stem cells in human liver cancer Cancer Cell 2008 13 2 153 166 10.1016/j.ccr.2008.01.013 2-s2.0-38549139140 18242515 

  33. 33 Li C. Heidt D. G. Dalerba P. Identification of pancreatic cancer stem cells Cancer Research 2007 67 3 1030 1037 10.1158/0008-5472.CAN-06-2030 2-s2.0-33847052127 17283135 

  34. 34 O’Brien C. A. Pollett A. Gallinger S. Dick J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice Nature 2007 445 7123 106 110 10.1038/nature05372 2-s2.0-33846100356 17122772 

  35. 35 Zhang S. Balch C. Chan M. W. Identification and characterization of ovarian cancer-initiating cells from primary human tumors Cancer Research 2008 68 11 4311 4320 10.1158/0008-5472.CAN-08-0364 2-s2.0-49249091523 18519691 

  36. 36 Brunner T. B. Kunz-Schughart L. A. Grosse-Gehling P. Baumann M. Cancer stem cells as a predictive factor in radiotherapy Seminars in Radiation Oncology 2012 22 2 151 174 10.1016/j.semradonc.2011.12.003 2-s2.0-84857611290 22385922 

  37. 37 Dalerba P. Cho R. W. Clarke M. F. Cancer stem cells: models and concepts Annual Review of Medicine 2007 58 1 267 284 10.1146/annurev.med.58.062105.204854 2-s2.0-34047096557 17002552 

  38. 38 López-Lázaro M. The migration ability of stem cells can explain the existence of cancer of unknown primary site. Rethinking metastasis Oncoscience 2015 2 5 467 475 10.18632/oncoscience.159 2-s2.0-84943756050 26097879 

  39. 39 Lopez-Lazaro M. Stem cell division theory of cancer Cell Cycle 2015 14 16 2547 2548 10.1080/15384101.2015.1062330 2-s2.0-84943743944 26090957 

  40. 40 Wang Y. Yang J. Zheng H. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model Cancer Cell 2009 15 6 514 526 10.1016/j.ccr.2009.04.001 2-s2.0-65649142176 19477430 

  41. 41 Nouri M. Caradec J. Lubik A. A. Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance Oncotarget 2017 8 12 18949 18967 10.18632/oncotarget.14850 2-s2.0-85015764709 28145883 

  42. 42 Barker N. Ridgway R. A. van Es J. H. Crypt stem cells as the cells-of-origin of intestinal cancer Nature 2009 457 7229 608 611 10.1038/nature07602 2-s2.0-59049106578 19092804 

  43. 43 Rubio D. Garcia-Castro J. Martín M. C. Spontaneous human adult stem cell transformation Cancer Research 2005 65 8 3035 3039 10.1158/0008-5472.CAN-04-4194 15833829 

  44. 44 Burns J. S. Abdallah B. M. Guldberg P. Rygaard J. Schrøder H. D. Kassem M. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells Cancer Research 2005 65 8 3126 3135 10.1158/0008-5472.CAN-04-2218 15833842 

  45. 45 Liu C. Chen Z. Chen Z. Zhang T. Lu Y. Multiple tumor types may originate from bone marrow–derived cells Neoplasia 2006 8 9 716 724 10.1593/neo.06253 2-s2.0-33749051928 16984729 

  46. 46 Baccelli I. Trumpp A. The evolving concept of cancer and metastasis stem cells Journal of Cell Biology 2012 198 3 281 293 10.1083/jcb.201202014 2-s2.0-84866447416 22869594 

  47. 47 Jamieson C. H. M. Ailles L. E. Dylla S. J. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML The New England Journal of Medicine 2004 351 7 657 667 10.1056/NEJMoa040258 2-s2.0-3943088431 15306667 

  48. 48 Schüller U. Heine V. M. Mao J. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma Cancer Cell 2008 14 2 123 134 10.1016/j.ccr.2008.07.005 2-s2.0-48449105147 18691547 

  49. 49 Yang Z. J. Ellis T. Markant S. L. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells Cancer Cell 2008 14 2 135 145 10.1016/j.ccr.2008.07.003 2-s2.0-48449101742 18691548 

  50. 50 Friedmann-Morvinski D. Bushong E. A. Ke E. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice Science 2012 338 6110 1080 1084 10.1126/science.1226929 2-s2.0-84869878282 23087000 

  51. 51 Chen K. Huang Y.-h. Chen J.-l. Understanding and targeting cancer stem cells: therapeutic implications and challenges Acta Pharmacologica Sinica 2013 34 6 732 740 10.1038/aps.2013.27 2-s2.0-84881453720 23685952 

  52. 52 Dalerba P. Dylla S. J. Park I. K. Phenotypic characterization of human colorectal cancer stem cells Proceedings of the National Academy of Sciences of the United States of America 2007 104 24 10158 10163 10.1073/pnas.0703478104 2-s2.0-34547193404 17548814 

  53. 53 Ginestier C. Hur M. H. Charafe-Jauffret E. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome Cell Stem Cell 2007 1 5 555 567 10.1016/j.stem.2007.08.014 2-s2.0-35848955428 18371393 

  54. 54 Shlush L. I. Zandi S. Mitchell A. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia Nature 2014 506 7488 328 333 10.1038/nature13038 2-s2.0-84894245627 24522528 

  55. 55 Auffinger B. Tobias A. L. Han Y. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy Cell Death & Differentiation 2014 21 7 1119 1131 10.1038/cdd.2014.31 2-s2.0-84902269863 24608791 

  56. 56 Hamerlik P. Lathia J. D. Rasmussen R. Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth Journal of Experimental Medicine 2012 209 3 507 520 10.1084/jem.20111424 2-s2.0-84860356630 22393126 

  57. 57 Shien K. Toyooka S. Yamamoto H. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell–like properties in cancer cells Cancer Research 2013 73 10 3051 3061 10.1158/0008-5472.CAN-12-4136 2-s2.0-84877868296 23542356 

  58. 58 Oskarsson T. Batlle E. Massague J. Metastatic stem cells: sources, niches, and vital pathways Cell Stem Cell 2014 14 3 306 321 10.1016/j.stem.2014.02.002 2-s2.0-84896113460 24607405 

  59. 59 Puisieux A. Brabletz T. Caramel J. Oncogenic roles of EMT-inducing transcription factors Nature Cell Biology 2014 16 6 488 494 10.1038/ncb2976 2-s2.0-84901787644 24875735 

  60. 60 Mani S. A. Guo W. Liao M. J. The epithelial-mesenchymal transition generates cells with properties of stem cells Cell 2008 133 4 704 715 10.1016/j.cell.2008.03.027 2-s2.0-43049165453 18485877 

  61. 61 Meidhof S. Brabletz S. Lehmann W. ZEB1‐associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat EMBO Molecular Medicine 2015 7 6 831 847 10.15252/emmm.201404396 2-s2.0-84930181902 25872941 

  62. 62 Uramoto H. Iwata T. Onitsuka T. Shimokawa H. Hanagiri T. Oyama T. Epithelial−mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma Anticancer Research 2010 30 7 2513 7 20682976 

  63. 63 Xie M. Zhang L. He C. S. Activation of Notch-1 enhances epithelial–mesenchymal transition in gefitinib-acquired resistant lung cancer cells Journal of Cellular Biochemistry 2012 113 5 1501 1513 10.1002/jcb.24019 2-s2.0-84859095585 22173954 

  64. 64 Black P. C. Brown G. A. Inamoto T. Sensitivity to epidermal growth factor receptor inhibitor requires E-cadherin expression in urothelial carcinoma cells Clinical Cancer Research 2008 14 5 1478 1486 10.1158/1078-0432.CCR-07-1593 2-s2.0-40949091867 18316572 

  65. 65 Fuchs B. C. Fujii T. Dorfman J. D. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells Cancer Research 2008 68 7 2391 2399 10.1158/0008-5472.CAN-07-2460 2-s2.0-42049116522 18381447 

  66. 66 Lo J. F. Yu C. C. Chiou S. H. The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers Cancer Research 2011 71 5 1912 1923 10.1158/0008-5472.CAN-10-2350 2-s2.0-79952219736 21169409 

  67. 67 Polyak K. Weinberg R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits Nature Reviews Cancer 2009 9 4 265 273 10.1038/nrc2620 2-s2.0-63049123066 19262571 

  68. 68 Siebzehnrubl F. A. Silver D. J. Tugertimur B. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance EMBO Molecular Medicine 2013 5 8 1196 1212 10.1002/emmm.201302827 2-s2.0-84881540768 23818228 

  69. 69 Koo B. S. Lee S. H. Kim J. M. Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells Oncogene 2015 34 18 2317 2324 10.1038/onc.2014.174 2-s2.0-84936120630 24954502 

  70. 70 Huang C. E. Yu C. C. Hu F. W. Chou M. Y. Tsai L. L. Enhanced chemosensitivity by targeting Nanog in head and neck squamous cell carcinomas International Journal of Molecular Sciences 2014 15 9 14935 14948 10.3390/ijms150914935 2-s2.0-84906827572 25158233 

  71. 71 Chou M. Y. Hu F. W. Yu C. H. Yu C. C. Sox2 expression involvement in the oncogenicity and radiochemoresistance of oral cancer stem cells Oral Oncology 2015 51 1 31 39 10.1016/j.oraloncology.2014.10.002 2-s2.0-84920516848 25456004 

  72. 72 Chiou G. Y. Yang T. W. Huang C. C. Musashi-1 promotes a cancer stem cell lineage and chemoresistance in colorectal cancer cells Scientific Reports 2017 7 1 p. 2172 10.1038/s41598-017-02057-9 2-s2.0-85019946953 28526879 

  73. 73 Cao H. Z. Liu X. F. Yang W. T. Chen Q. Zheng P. S. LGR5 promotes cancer stem cell traits and chemoresistance in cervical cancer Cell Death & Disease 2017 8 9, article e3039 10.1038/cddis.2017.393 28880275 

  74. 74 Seigel G. M. Campbell L. M. Narayan M. Gonzalez-Fernandez F. Cancer stem cell characteristics in retinoblastoma Molecular Vision 2005 11 729 737 16179903 

  75. 75 Hirschmann-Jax C. Foster A. E. Wulf G. G. A distinct “side population” of cells with high drug efflux capacity in human tumor cells Proceedings of the National Academy of Sciences of the United States of America 2004 101 39 14228 14233 10.1073/pnas.0400067101 2-s2.0-4644306516 15381773 

  76. 76 Haraguchi N. Utsunomiya T. Inoue H. Characterization of a side population of cancer cells from human gastrointestinal system Stem Cells 2006 24 3 506 513 10.1634/stemcells.2005-0282 2-s2.0-33744985294 16239320 

  77. 77 Alisi A. Cho W. Locatelli F. Fruci D. Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma International Journal of Molecular Sciences 2013 14 12 24706 24725 10.3390/ijms141224706 2-s2.0-84890953102 24351843 

  78. 78 Bleau A. M. Hambardzumyan D. Ozawa T. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells Cell Stem Cell 2009 4 3 226 235 10.1016/j.stem.2009.01.007 2-s2.0-60849117508 19265662 

  79. 79 Raha D. Wilson T. R. Peng J. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation Cancer Research 2014 74 13 3579 3590 10.1158/0008-5472.CAN-13-3456 24812274 

  80. 80 Pearce D. J. Taussig D. Simpson C. Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples Stem Cells 2005 23 6 752 760 10.1634/stemcells.2004-0292 2-s2.0-20344364875 15917471 

  81. 81 Su Y. Qiu Q. Zhang X. Aldehyde dehydrogenase 1 A1–positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer Cancer Epidemiology Biomarkers & Prevention 2010 19 2 327 337 10.1158/1055-9965.EPI-09-0865 2-s2.0-76149125786 20142235 

  82. 82 Clay M. R. Tabor M. Owen J. H. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase Head & Neck 2010 32 9 1195 1201 10.1002/hed.21315 2-s2.0-77954901231 20073073 

  83. 83 Jiang F. Qiu Q. Khanna A. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer Molecular Cancer Research 2009 7 3 330 338 10.1158/1541-7786.MCR-08-0393 2-s2.0-62549152644 19276181 

  84. 84 Nakahata K. Uehara S. Nishikawa S. Aldehyde dehydrogenase 1 (ALDH1) is a potential marker for cancer stem cells in embryonal rhabdomyosarcoma PLoS One 2015 10 4, article e0125454 10.1371/journal.pone.0125454 2-s2.0-84928621015 25915760 

  85. 85 Huang C. P. Tsai M. F. Chang T. H. ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors Cancer Letters 2013 328 1 144 151 10.1016/j.canlet.2012.08.021 2-s2.0-84868496506 22935675 

  86. 86 Ajani J. A. Wang X. Song S. ALDH-1 expression levels predict response or resistance to preoperative chemoradiation in resectable esophageal cancer patients Molecular Oncology 2014 8 1 142 149 10.1016/j.molonc.2013.10.007 2-s2.0-84893006227 24210755 

  87. 87 Kreso A. O'Brien C. A. van Galen P. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer Science 2013 339 6119 543 548 10.1126/science.1227670 2-s2.0-84873084388 23239622 

  88. 88 Kurtova A. V. Xiao J. Mo Q. Blocking PGE 2 -induced tumour repopulation abrogates bladder cancer chemoresistance Nature 2015 517 7533 209 213 10.1038/nature14034 2-s2.0-84925545810 25470039 

  89. 89 Ishimoto T. Nagano O. Yae T. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc − and thereby promotes tumor growth Cancer Cell 2011 19 3 387 400 10.1016/j.ccr.2011.01.038 2-s2.0-79952528125 21397861 

  90. 90 Diehn M. Cho R. W. Lobo N. A. Association of reactive oxygen species levels and radioresistance in cancer stem cells Nature 2009 458 7239 780 783 10.1038/nature07733 2-s2.0-64749093574 19194462 

  91. 91 Yin H. Glass J. The phenotypic radiation resistance of CD44 + /CD24 −or low breast cancer cells is mediated through the enhanced activation of ATM signaling PLoS One 2011 6 9, article e24080 10.1371/journal.pone.0024080 2-s2.0-80052841288 21935375 

  92. 92 Bao S. Wu Q. McLendon R. E. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response Nature 2006 444 7120 756 760 10.1038/nature05236 2-s2.0-33845317573 17051156 

  93. 93 Wang J. Wakeman T. P. Lathia J. D. Notch promotes radioresistance of glioma stem cells Stem Cells 2010 28 1 17 28 10.1002/stem.261 2-s2.0-75349108271 19921751 

  94. 94 Kise K. Kinugasa-Katayama Y. Takakura N. Tumor microenvironment for cancer stem cells Advanced Drug Delivery Reviews 2016 99 Part B 197 205 10.1016/j.addr.2015.08.005 2-s2.0-84941774559 26362921 

  95. 95 Lau E. Y.-T. Ho N. P.-Y. Lee T. K.-W. Cancer stem cells and their microenvironment: biology and therapeutic implications Stem Cells International 2017 2017 11 3714190 10.1155/2017/3714190 2-s2.0-85015302236 

  96. 96 Turdo A. Todaro M. Stassi G. Babashah S. Targeting cancer stem cells and the tumor microenvironment Cancer Stem Cells: Emerging Concepts and Future Perspectives in Translational Oncology 2015 Cham Springer International Publishing 445 476 

  97. 97 Adisetiyo H. Liang M. Liao C. P. Dependence of castration-resistant prostate cancer (CRPC) stem cells on CRPC-associated fibroblasts Journal of Cellular Physiology 2014 229 9 1170 1176 10.1002/jcp.24546 2-s2.0-84901236311 24752784 

  98. 98 Liao C. P. Adisetiyo H. Liang M. Roy-Burman P. Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells Cancer Research 2010 70 18 7294 7303 10.1158/0008-5472.CAN-09-3982 2-s2.0-77956904572 20807814 

  99. 99 Chen W.-J. Ho C.-C. Chang Y.-L. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling Nature Communications 2014 5 p. 3472 10.1038/ncomms4472 2-s2.0-84897058262 24668028 

  100. 100 Kinugasa Y. Matsui T. Takakura N. CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment Stem Cells 2014 32 1 145 156 10.1002/stem.1556 2-s2.0-84891757812 24395741 

  101. 101 Cammarota F. Laukkanen M. O. Mesenchymal stem/stromal cells in stromal evolution and cancer progression Stem Cells International 2016 2016 11 4824573 10.1155/2016/4824573 2-s2.0-84954556044 26798356 

  102. 102 Hovinga K. E. Shimizu F. Wang R. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate Stem Cells 2010 28 6 1019 1029 10.1002/stem.429 2-s2.0-77956623598 20506127 

  103. 103 Calabrese C. Poppleton H. Kocak M. A perivascular niche for brain tumor stem cells Cancer Cell 2007 11 1 69 82 10.1016/j.ccr.2006.11.020 2-s2.0-33846029123 17222791 

  104. 104 Krishnamurthy S. Dong Z. Vodopyanov D. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells Cancer Research 2010 70 23 9969 9978 10.1158/0008-5472.CAN-10-1712 2-s2.0-78649939527 21098716 

  105. 105 Krishnamurthy S. Warner K. A. Dong Z. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells Stem Cells 2014 32 11 2845 2857 10.1002/stem.1793 2-s2.0-84907887777 25078284 

  106. 106 Zhang Z. Dong Z. Lauxen I. S. Filho M. S. Nor J. E. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype Cancer Research 2014 74 10 2869 2881 10.1158/0008-5472.CAN-13-2032 2-s2.0-84901267967 24686166 

  107. 107 Zhu T. S. Costello M. A. Talsma C. E. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells Cancer Research 2011 71 18 6061 6072 10.1158/0008-5472.CAN-10-4269 2-s2.0-80052795862 21788346 

  108. 108 Lu J. Ye X. Fan F. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1 Cancer Cell 2013 23 2 171 185 10.1016/j.ccr.2012.12.021 2-s2.0-84873728505 23375636 

  109. 109 Schwitalla S. Fingerle A. A. Cammareri P. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties Cell 2013 152 1-2 25 38 10.1016/j.cell.2012.12.012 2-s2.0-84872600554 23273993 

  110. 110 Vermeulen L. de Sousa E Melo F. van der Heijden M. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment Nature Cell Biology 2010 12 5 468 476 10.1038/ncb2048 2-s2.0-77951975325 20418870 

  111. 111 He X. C. Zhang J. Tong W. G. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt– β -catenin signaling Nature Genetics 2004 36 10 1117 1121 10.1038/ng1430 2-s2.0-6944224156 15378062 

  112. 112 Milner L. A. Bigas A. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation Blood 1999 93 8 2431 2448 10194420 

  113. 113 Kwon O.-J. Valdez J. M. Zhang L. Increased Notch signalling inhibits anoikis and stimulates proliferation of prostate luminal epithelial cells Nature Communications 2014 5 p. 4416 10.1038/ncomms5416 2-s2.0-84907547780 

  114. 114 Pires B. R. B. De Amorim Í. S. S. Souza L. D. E. Rodrigues J. A. Mencalha A. L. Targeting cellular signaling pathways in breast cancer stem cells and its implication for cancer treatment Anticancer Research 2016 36 11 5681 5692 10.21873/anticanres.11151 2-s2.0-84993965457 27793889 

  115. 115 Bao B. Azmi A. S. Ali S. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2012 1826 2 272 296 10.1016/j.bbcan.2012.04.008 2-s2.0-84861828232 22579961 

  116. 116 Bao B. Ali S. Ahmad A. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment PLoS One 2012 7 12, article e50165 10.1371/journal.pone.0050165 2-s2.0-84871261049 23272057 

  117. 117 Ng K. P. Manjeri A. Lee K. L. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition Blood 2014 123 21 3316 3326 10.1182/blood-2013-07-511907 2-s2.0-84903146712 24705490 

  118. 118 Murakami A. Takahashi F. Nurwidya F. Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor PLoS One 2014 9 1, article e86459 10.1371/journal.pone.0086459 2-s2.0-84900297049 24489728 

  119. 119 Rausch V. Liu L. Apel A. Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment The Journal of Pathology 2012 227 3 325 335 10.1002/path.3994 2-s2.0-84862014301 22262369 

  120. 120 Lotti F. Jarrar A. M. Pai R. K. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A Journal of Experimental Medicine 2013 210 13 2851 2872 10.1084/jem.20131195 2-s2.0-84890812467 24323355 

  121. 121 Nair N. Calle A. S. Zahra M. H. A cancer stem cell model as the point of origin of cancer-associated fibroblasts in tumor microenvironment Scientific Reports 2017 7 1 p. 6838 10.1038/s41598-017-07144-5 2-s2.0-85026480047 28754894 

  122. 122 Luraghi P. Reato G. Cipriano E. MET signaling in colon cancer stem-like cells blunts the therapeutic response to EGFR inhibitors Cancer Research 2014 74 6 1857 1869 10.1158/0008-5472.CAN-13-2340-T 2-s2.0-84896532797 24448239 

  123. 123 Korkaya H. Kim G.i. Davis A. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population Molecular Cell 2012 47 4 570 584 10.1016/j.molcel.2012.06.014 2-s2.0-84865401715 22819326 

  124. 124 Bhola N. E. Balko J. M. Dugger T. C. TGF- β inhibition enhances chemotherapy action against triple-negative breast cancer The Journal of Clinical Investigation 2013 123 3 1348 1358 10.1172/JCI65416 2-s2.0-84874607100 23391723 

  125. 125 Yang Y. G. Sari I. N. Zia M. F. Lee S. R. Song S. J. Kwon H. Y. Tetraspanins: spanning from solid tumors to hematologic malignancies Experimental Hematology 2016 44 5 322 328 10.1016/j.exphem.2016.02.006 2-s2.0-84963554026 26930362 

  126. 126 Kwon H. Y. Bajaj J. Ito T. Tetraspanin 3 is required for the development and propagation of acute myelogenous leukemia Cell Stem Cell 2015 17 2 152 164 10.1016/j.stem.2015.06.006 2-s2.0-84938741455 26212080 

  127. 127 Zeng Z. Samudio I. J. Munsell M. Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias Molecular Cancer Therapeutics 2006 5 12 3113 3121 10.1158/1535-7163.MCT-06-0228 2-s2.0-33846254013 17172414 

  128. 128 Azab A. K. Runnels J. M. Pitsillides C. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy Blood 2009 113 18 4341 4351 10.1182/blood-2008-10-186668 2-s2.0-66149150580 19139079 

  129. 129 Yamashina T. Baghdadi M. Yoneda A. Cancer stem-like cells derived from chemoresistant tumors have a unique capacity to prime tumorigenic myeloid cells Cancer Research 2014 74 10 2698 2709 10.1158/0008-5472.CAN-13-2169 2-s2.0-84901277245 24638980 

  130. 130 Zheng Y. Cai Z. Wang S. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug–induced apoptosis Blood 2009 114 17 3625 3628 10.1182/blood-2009-05-220285 2-s2.0-70449477633 19710503 

  131. 131 Mitchem J. B. Brennan D. J. Knolhoff B. L. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses Cancer Research 2013 73 3 1128 1141 10.1158/0008-5472.CAN-12-2731 2-s2.0-84873468174 23221383 

  132. 132 Amit M. Gil Z. Macrophages increase the resistance of pancreatic adenocarcinoma cells to gemcitabine by upregulating cytidine deaminase Oncoimmunology 2013 2 12, article e27231 10.4161/onci.27231 2-s2.0-84894578451 24498570 

  133. 133 McDonald O. G. Wu H. Timp W. Doi A. Feinberg A. P. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition Nature Structural & Molecular Biology 2011 18 8 867 874 10.1038/nsmb.2084 2-s2.0-79961023271 21725293 

  134. 134 Harris W. J. Huang X. Lynch J. T. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells Cancer Cell 2012 21 4 473 487 10.1016/j.ccr.2012.03.014 2-s2.0-84859837026 22464800 

  135. 135 Crea F. Danesi R. Farrar W. L. Cancer stem cell epigenetics and chemoresistance Epigenomics 2009 1 1 63 79 10.2217/epi.09.4 2-s2.0-79951983645 22122637 

  136. 136 Qin L. Zhang X. Zhang L. Downregulation of BMI-1 enhances 5-fluorouracil-induced apoptosis in nasopharyngeal carcinoma cells Biochemical and Biophysical Research Communications 2008 371 3 531 535 10.1016/j.bbrc.2008.04.117 2-s2.0-43549102626 18452707 

  137. 137 Ferretti R. Bhutkar A. McNamara M. C. Lees J. A. BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance Genes & Development 2016 30 1 18 33 10.1101/gad.267757.115 2-s2.0-84953455590 26679841 

  138. 138 Proctor E. Waghray M. Lee C. J. Bmi1 enhances tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma PLoS One 2013 8 2, article e55820 10.1371/journal.pone.0055820 2-s2.0-84874265490 23437065 

  139. 139 Wang E. Bhattacharyya S. Szabolcs A. Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer PLoS One 2011 6 3, article e17918 10.1371/journal.pone.0017918 2-s2.0-79952824058 21445297 

  140. 140 Wu J. Hu D. Zhang R. Depletion of Bmi-1 enhances 5-fluorouracil-induced apoptosis and autophagy in hepatocellular carcinoma cells Oncology Letters 2012 4 4 723 726 10.3892/ol.2012.805 2-s2.0-84864704847 23205090 

  141. 141 Ougolkov A. V. Bilim V. N. Billadeau D. D. Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2 Clinical Cancer Research 2008 14 21 6790 6796 10.1158/1078-0432.CCR-08-1013 2-s2.0-58149214373 18980972 

  142. 142 Kim S. H. Joshi K. Ezhilarasan R. EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner Stem Cell Reports 2015 4 2 226 238 10.1016/j.stemcr.2014.12.006 2-s2.0-84922574009 25601206 

  143. 143 Fillmore C. M. Xu C. Desai P. T. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors Nature 2015 520 7546 239 242 10.1038/nature14122 2-s2.0-84927547043 25629630 

  144. 144 Pietersen A. M. Horlings H. M. Hauptmann M. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer Breast Cancer Research 2008 10 6, article R109 10.1186/bcr2214 2-s2.0-63849258988 19099573 

  145. 145 Zhang B. Strauss A. C. Chu S. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate Cancer Cell 2010 17 5 427 442 10.1016/j.ccr.2010.03.011 2-s2.0-77952105211 20478526 

  146. 146 Frame F. M. Pellacani D. Collins A. T. HDAC inhibitor confers radiosensitivity to prostate stem-like cells British Journal of Cancer 2013 109 12 3023 3033 10.1038/bjc.2013.691 2-s2.0-84890434613 24220693 

  147. 147 Bruzzese F. Leone A. Rocco M. HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT Journal of Cellular Physiology 2011 226 9 2378 2390 10.1002/jcp.22574 2-s2.0-79958719758 21660961 

  148. 148 Song K.-H. Choi C. H. Lee H.-J. HDAC1 upregulation by NANOG promotes multidrug resistance and a stem-like phenotype in immune edited tumor cells Cancer Research 2017 77 18 10.1158/0008-5472.can-17-0072 2-s2.0-85031409431 28716899 

  149. 149 Ibanez de Caceres I. Cortes-Sempere M. Moratilla C. IGFBP-3 hypermethylation-derived deficiency mediates cisplatin resistance in non-small-cell lung cancer Oncogene 2010 29 11 1681 1690 10.1038/onc.2009.454 2-s2.0-77949654035 20023704 

  150. 150 Strathdee G. MacKean M. J. Illand M. Brown R. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer Oncogene 1999 18 14 2335 2341 10.1038/sj.onc.1202540 10327053 

  151. 151 Gifford G. Paul J. Vasey P. A. Kaye S. B. Brown R. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients Clinical Cancer Research 2004 10 13 4420 4426 10.1158/1078-0432.CCR-03-0732 2-s2.0-3042774430 15240532 

  152. 152 Brown R. Hirst G. L. Gallagher W. M. hMLH1 expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents Oncogene 1997 15 1 45 52 10.1038/sj.onc.1201167 9233776 

  153. 153 Mackay H. J. Cameron D. Rahilly M. Reduced MLH1 expression in breast tumors after primary chemotherapy predicts disease-free survival Journal of Clinical Oncology 2000 18 1 87 93 10.1200/JCO.2000.18.1.87 10623697 

  154. 154 Sullivan J. P. Spinola M. Dodge M. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling Cancer Research 2010 70 23 9937 9948 10.1158/0008-5472.CAN-10-0881 2-s2.0-78649960144 21118965 

  155. 155 Dontu G. Jackson K. W. McNicholas E. Kawamura M. J. Abdallah W. M. Wicha M. S. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells Breast Cancer Research 2004 6 6 R605 R615 10.1186/bcr920 2-s2.0-18944375734 15535842 

  156. 156 Park D. M. Jung J. Masjkur J. Hes3 regulates cell number in cultures from glioblastoma multiforme with stem cell characteristics Scientific Reports 2013 3 1 p. 1095 10.1038/srep01095 2-s2.0-84873694623 

  157. 157 Yang L. Xie G. Fan Q. Xie J. Activation of the hedgehog-signaling pathway in human cancer and the clinical implications Oncogene 2010 29 4 469 481 10.1038/onc.2009.392 2-s2.0-75749139262 19935712 

  158. 158 Tam W. F. Hahnel P. S. Schuler A. STAT5 is crucial to maintain leukemic stem cells in acute myelogenous leukemias induced by MOZ-TIF2 Cancer Research 2013 73 1 373 384 10.1158/0008-5472.CAN-12-0255 2-s2.0-84871994982 23149921 

  159. 159 Takebe N. Miele L. Harris P. J. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update Nature Reviews Clinical Oncology 2015 12 8 445 464 10.1038/nrclinonc.2015.61 2-s2.0-84938209433 25850553 

  160. 160 Kurth I. Peitzsch C. Baumann M. Dubrovska A. The role of cancer stem cells in tumor Radioresistance Cancer Stem Cells 2014 Hoboken, New Jersey, USA John Wiley & Sons 473 491 10.1002/9781118356203.ch35 2-s2.0-84923256484 

  161. 161 Noda T. Nagano H. Takemasa I. Activation of Wnt/ β -catenin signalling pathway induces chemoresistance to interferon- α /5-fluorouracil combination therapy for hepatocellular carcinoma British Journal of Cancer 2009 100 10 1647 1658 10.1038/sj.bjc.6605064 2-s2.0-67349198077 19401692 

  162. 162 Yang W. Yan H. X. Chen L. Wnt/ β -catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells Cancer Research 2008 68 11 4287 4295 10.1158/0008-5472.CAN-07-6691 2-s2.0-49249122615 18519688 

  163. 163 Flahaut M. Meier R. Coulon A. The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/ β -catenin pathway Oncogene 2009 28 23 2245 2256 10.1038/onc.2009.80 2-s2.0-67349153325 19421142 

  164. 164 Chau W. K. Ip C. K. Mak A. S. C. Lai H. C. Wong A. S. T. c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/ β -catenin–ATP-binding cassette G2 signaling Oncogene 2013 32 22 2767 2781 10.1038/onc.2012.290 2-s2.0-84879410940 22797058 

  165. 165 Zeng X. Zhao H. Li Y. Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia Autophagy 2015 11 2 355 372 10.4161/15548627.2014.994368 2-s2.0-84943448617 25701353 

  166. 166 Xu M. Gong A. Yang H. Sonic hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44 + /Musashi-1 + gastric cancer stem cells Cancer Letters 2015 369 1 124 133 10.1016/j.canlet.2015.08.005 2-s2.0-84943450263 26276718 

  167. 167 Ulasov I. V. Nandi S. Dey M. Sonabend A. M. Lesniak M. S. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133 + glioma stem cells to temozolomide therapy Molecular Medicine 2011 17 1-2 103 112 10.2119/molmed.2010.00062 2-s2.0-78751640633 20957337 

  168. 168 Meng R. D. Shelton C. C. Li Y. M. γ -Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity Cancer Research 2009 69 2 573 582 10.1158/0008-5472.CAN-08-2088 2-s2.0-58349091690 19147571 

  169. 169 McAuliffe S. M. Morgan S. L. Wyant G. A. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy Proceedings of the National Academy of Sciences of the United States of America 2012 109 43 E2939 E2948 10.1073/pnas.1206400109 2-s2.0-84867919330 23019585 

  170. 170 Liu Y. P. Yang C. J. Huang M. S. Cisplatin selects for multidrug-resistant CD133 + cells in lung adenocarcinoma by activating Notch signaling Cancer Research 2013 73 1 406 416 10.1158/0008-5472.CAN-12-1733 2-s2.0-84872005140 23135908 

  171. 171 Alonso S. Jones R. J. Ghiaur G. Retinoic acid, CYP26, and drug resistance in the stem cell niche Experimental Hematology 2017 54 17 25 10.1016/j.exphem.2017.07.004 2-s2.0-85028730795 28754309 

  172. 172 Krause M. Dubrovska A. Linge A. Baumann M. Cancer stem cells: radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments Advanced Drug Delivery Reviews 2017 109 63 73 10.1016/j.addr.2016.02.002 2-s2.0-84958559501 26877102 

  173. 173 Olson R. Albright C. Recent progress in the medicinal chemistry of γ -secretase inhibitors Current Topics in Medicinal Chemistry 2008 8 1 17 33 10.2174/156802608783334088 2-s2.0-40349100482 18220929 

  174. 174 Richter S. Bedard P. L. Chen E. X. A phase I study of the oral gamma secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575) Investigational New Drugs 2014 32 2 243 249 10.1007/s10637-013-9965-4 2-s2.0-84896391556 23645447 

  175. 175 Beachy P. A. Hymowitz S. G. Lazarus R. A. Leahy D. J. Siebold C. Interactions between Hedgehog proteins and their binding partners come into view Genes & Development 2010 24 18 2001 2012 10.1101/gad.1951710 2-s2.0-77956814604 20844013 

  176. 176 Dirix L. Discovery and exploitation of novel targets by approved drugs Journal of Clinical Oncology 2014 32 8 720 721 10.1200/JCO.2013.53.7118 2-s2.0-84899629643 24493724 

  177. 177 Sekulic A. Migden M. R. Oro A. E. Efficacy and safety of vismodegib in advanced basal-cell carcinoma The New England Journal of Medicine 2012 366 23 2171 2179 10.1056/NEJMoa1113713 2-s2.0-84861856844 22670903 

  178. 178 Li X. Placencio V. Iturregui J. M. Prostate tumor progression is mediated by a paracrine TGF- β /Wnt3a signaling axis Oncogene 2008 27 56 7118 7130 10.1038/onc.2008.293 2-s2.0-58149215849 18724388 

  179. 179 Kahn M. Can we safely target the WNT pathway? Nature Reviews Drug Discovery 2014 13 7 513 532 10.1038/nrd4233 2-s2.0-84903767326 24981364 

  180. 180 Smith D. C. Rosen L. S. Chugh R. First-in-human evaluation of the human monoclonal antibody vantictumab (OMP-18R5; anti-Frizzled) targeting the WNT pathway in a phase I study for patients with advanced solid tumors Journal of Clinical Oncology 2013 31 15 Supplement p. 2540 23733781 

  181. 181 U.S. National Library of Medicine ClinicalTrials.Gov 2014, http://clinicaltrials.gov/show/NCT01345201 

  182. 182 Jimeno A. Gordon M. S. Chugh R. A first-in-human phase 1 study of anticancer stem cell agent OMP-54F28 (FZD8-Fc), decoy receptor for WNT ligands, in patients with advanced solid tumors Journal of Clinical Oncology 2014 32 15 Supplement p. 2505 

  183. 183 Friedmann-Morvinski D. Verma I. M. Dedifferentiation and reprogramming: origins of cancer stem cells EMBO Reports 2014 15 3 244 253 10.1002/embr.201338254 2-s2.0-84898645670 24531722 

  184. 184 Du B. Shim J. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer Molecules 2016 21 8 10.3390/molecules21070965 2-s2.0-85013106576 27455225 

  185. 185 Malek R. Wang H. Taparra K. Tran P. T. Therapeutic targeting of epithelial plasticity programs: focus on the epithelial-mesenchymal transition Cells, Tissues, Organs 2017 203 2 114 127 10.1159/000447238 2-s2.0-85013818451 28214899 

  186. 186 Knoll S. Emmrich S. Putzer B. M. The E2F1-miRNA cancer progression network Advances in Experimental Medicine and Biology 2013 774 135 147 10.1007/978-94-007-5590-1_8 2-s2.0-84878805587 23377972 

  187. 187 Dar A. A. Majid S. de Semir D. Nosrati M. Bezrookove V. Kashani-Sabet M. miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein Journal of Biological Chemistry 2011 286 19 16606 16614 10.1074/jbc.M111.227611 2-s2.0-79955764602 21454583 

  188. 188 Alla V. Kowtharapu B. S. Engelmann D. E2F1 confers anticancer drug resistance by targeting ABC transporter family members and Bcl-2 via the p73/DNp73-miR-205 circuitry Cell Cycle 2012 11 16 3067 3078 10.4161/cc.21476 2-s2.0-84865344231 22871739 

  189. 189 Gregory P. A. Bert A. G. Paterson E. L. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 Nature Cell Biology 2008 10 5 593 601 10.1038/ncb1722 2-s2.0-43049103824 18376396 

  190. 190 Palena C. Hamilton D. H. Immune targeting of tumor epithelial–mesenchymal transition via brachyury-based vaccines Advances in Cancer Research 2015 128 69 93 10.1016/bs.acr.2015.04.001 2-s2.0-84952714993 26216630 

  191. 191 Godlewski J. Nowicki M. O. Bronisz A. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal Cancer Research 2008 68 22 9125 9130 10.1158/0008-5472.CAN-08-2629 2-s2.0-56449126945 19010882 

  192. 192 O'Brien C. A. Kreso A. Ryan P. ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21 Cancer Cell 2012 21 6 777 792 10.1016/j.ccr.2012.04.036 2-s2.0-84862143004 22698403 

  193. 193 Deng J. Yang M. Jiang R. An N. Wang X. Liu B. Long non-coding RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation and migration of the cancer stem-like cell (CSC) subpopulation enriched from breast cancer cells PLoS One 2017 12 1, article e0170860 10.1371/journal.pone.0170860 2-s2.0-85010912677 28122024 

  194. 194 Song S. J. Poliseno L. Song M. S. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling Cell 2013 154 2 311 324 10.1016/j.cell.2013.06.026 2-s2.0-84880570961 23830207 

  195. 195 Yu F. Yao H. Zhu P. let-7 regulates self renewal and tumorigenicity of breast cancer cells Cell 2007 131 6 1109 1123 10.1016/j.cell.2007.10.054 2-s2.0-36849078711 18083101 

  196. 196 Shimono Y. Zabala M. Cho R. W. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells Cell 2009 138 3 592 603 10.1016/j.cell.2009.07.011 2-s2.0-68049114782 19665978 

  197. 197 Iliopoulos D. Lindahl-Allen M. Polytarchou C. Hirsch H. A. Tsichlis P. N. Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells Molecular Cell 2010 39 5 761 772 10.1016/j.molcel.2010.08.013 2-s2.0-77956547097 20832727 

  198. 198 Iliopoulos D. Rotem A. Struhl K. Inhibition of miR-193a expression by Max and RXR α activates K-Ras and PLAU to mediate distinct aspects of cellular transformation Cancer Research 2011 71 15 5144 5153 10.1158/0008-5472.CAN-11-0425 2-s2.0-79960970390 21670079 

  199. 199 Bitarte N. Bandres E. Boni V. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells Stem Cells 2011 29 11 1661 1671 10.1002/stem.741 2-s2.0-80054924979 21948564 

  200. 200 Bu P. Chen K. Y. Chen J. H. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells Cell Stem Cell 2013 12 5 602 615 10.1016/j.stem.2013.03.002 2-s2.0-84877263242 23642368 

  201. 201 Liu C. Kelnar K. Liu B. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44 Nature Medicine 2011 17 2 211 215 10.1038/nm.2284 2-s2.0-79751473114 21240262 

  202. 202 Wu Y. Y. Chen Y. L. Jao Y. C. Hsieh I. S. Chang K. C. Hong T. M. miR-320 regulates tumor angiogenesis driven by vascular endothelial cells in oral cancer by silencing neuropilin 1 Angiogenesis 2014 17 1 247 260 10.1007/s10456-013-9394-1 2-s2.0-84892736489 24114198 

  203. 203 Visus C. Wang Y. Lozano-Leon A. Targeting ALDH bright human carcinoma–initiating cells with ALDH1A1-specific CD8 + T cells Clinical Cancer Research 2011 17 19 6174 6184 10.1158/1078-0432.CCR-11-1111 2-s2.0-80053542413 21856769 

  204. 204 Jin L. Hope K. J. Zhai Q. Smadja-Joffe F. Dick J. E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells Nature Medicine 2006 12 10 1167 1174 10.1038/nm1483 2-s2.0-33749515476 16998484 

  205. 205 Guo Y. Ma J. Wang J. Inhibition of human melanoma growth and metastasis in vivo by anti-CD44 monoclonal antibody Cancer Research 1994 54 6 1561 1565 7511044 

  206. 206 Swaminathan S. K. Olin M. R. Forster C. L. Cruz K. S. S. Panyam J. Ohlfest J. R. Identification of a novel monoclonal antibody recognizing CD133 Journal of Immunological Methods 2010 361 1-2 110 115 10.1016/j.jim.2010.07.007 2-s2.0-77956878401 20674577 

  207. 207 Ferrari F. Bellone S. Black J. Solitomab, an EpCAM/CD3 bispecific antibody construct (BiTE®), is highly active against primary uterine and ovarian carcinosarcoma cell lines in vitro Journal of Experimental & Clinical Cancer Research 2015 34 1 p. 123 10.1186/s13046-015-0241-7 2-s2.0-84944326180 26474755 

  208. 208 Sen M. Wankowski D. M. Garlie N. K. Use of anti-CD3 × anti-HER2/neu bispecific antibody for redirecting cytotoxicity of activated T cells toward HER2/neu + tumors Journal of Hematotherapy & Stem Cell Research 2001 10 2 247 260 10.1089/15258160151134944 2-s2.0-0034744176 11359672 

  209. 209 Dammeijer F. Lievense L. A. Kaijen-Lambers M. E. Depletion of tumor-associated macrophages with a CSF-1R kinase inhibitor enhances antitumor immunity and survival induced by DC immunotherapy Cancer Immunology Research 2017 5 7 535 546 10.1158/2326-6066.CIR-16-0309 2-s2.0-85021944840 28536100 

  210. 210 Yang D. R. Ding X. F. Luo J. Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)-Oct4-interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133 + stem/progenitor cells to battle prostate cancer Journal of Biological Chemistry 2013 288 23 16476 16483 10.1074/jbc.M112.448142 2-s2.0-84878765030 23609451 

  211. 211 Kim S. Y. Kang J. W. Song X. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells Cellular Signalling 2013 25 4 961 969 10.1016/j.cellsig.2013.01.007 2-s2.0-84873537569 23333246 

  212. 212 Ginestier C. Liu S. Diebel M. E. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts The Journal of Clinical Investigation 2010 120 2 485 497 10.1172/JCI39397 2-s2.0-76649113726 20051626 

  213. 213 Topalian S. L. Hodi F. S. Brahmer J. R. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer The New England Journal of Medicine 2012 366 26 2443 2454 10.1056/NEJMoa1200690 2-s2.0-84862859820 22658127 

  214. 214 Ansell S. M. Lesokhin A. M. Borrello I. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma The New England Journal of Medicine 2015 372 4 311 319 10.1056/NEJMoa1411087 2-s2.0-84925221855 25482239 

  215. 215 Hu Y. Fu L. Targeting cancer stem cells: a new therapy to cure cancer patients American Journal of Cancer Research 2012 2 3 340 356 22679565 

  216. 216 Pine S. R. Marshall B. Varticovski L. Lung cancer stem cells Disease Markers 2008 24 4-5 257 266 10.1155/2008/396281 18525120 

  217. 217 Chanmee T. Ontong P. Kimata K. Itano N. Key roles of hyaluronan and its CD44 receptor in the stemness and survival of cancer stem cells Frontiers in Oncology 2015 5 10.3389/fonc.2015.00180 2-s2.0-84940988452 

  218. 218 Kim Y. J. Siegler E. L. Siriwon N. Wang P. Therapeutic strategies for targeting cancer stem cells Journal of Cancer Metastasis and Treatment 2016 2 7 233 242 10.20517/2394-4722.2016.26 

  219. 219 Dragu D. L. Necula L. G. Bleotu C. Diaconu C. C. Chivu-Economescu M. Therapies targeting cancer stem cells: current trends and future challenges World Journal of Stem Cells 2015 7 9 1185 1201 26516409 

  220. 220 Han L. Shi S. Gong T. Zhang Z. Sun X. Cancer stem cells: therapeutic implications and perspectives in cancer therapy Acta Pharmaceutica Sinica B 2013 3 2 65 75 10.1016/j.apsb.2013.02.006 

  221. 221 Zhang C. Li C. He F. Cai Y. Yang H. Identification of CD44+CD24+ gastric cancer stem cells Journal of Cancer Research and Clinical Oncology 2011 137 11 1679 1686 10.1007/s00432-011-1038-5 2-s2.0-80054728423 21882047 

  222. 222 Takaishi S. Okumura T. Tu S. Identification of gastric cancer stem cells using the cell surface marker CD44 Stem Cells 2009 27 5 1006 1020 10.1002/stem.30 2-s2.0-66149175569 19415765 

  223. 223 Collins A. T. Berry P. A. Hyde C. Stower M. J. Maitland N. J. Prospective identification of tumorigenic prostate cancer stem cells Cancer Research 2005 65 23 10946 10951 10.1158/0008-5472.CAN-05-2018 2-s2.0-28244472369 16322242 

  224. 224 Son M. J. Woolard K. Nam D. H. Lee J. Fine H. A. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma Cell Stem Cell 2009 4 5 440 452 10.1016/j.stem.2009.03.003 2-s2.0-65349115320 19427293 

  225. 225 Prince M. E. Sivanandan R. Kaczorowski A. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma Proceedings of the National Academy of Sciences of the United States of America 2007 104 3 973 978 10.1073/pnas.0610117104 2-s2.0-33846512398 17210912 

  226. 226 Singh S. K. Hawkins C. Clarke I. D. Identification of human brain tumour initiating cells Nature 2004 432 7015 396 401 10.1038/nature03128 2-s2.0-9244241576 15549107 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로