$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High frequency compressional wave speed and attenuation measurements in water-saturated granular media with unimodal and bimodal grain size distributions

The Journal of the Acoustical Society of America, v.143 no.2, 2018년, pp.659 - 665  

Yang, Haesang (Department of Naval Architecture and Ocean Engineering and Research Institute of Marine Systems Engineering, Seoul National University, Seoul 08826, South Korea) ,  Seong, Woojae (Department of Naval Architecture and Ocean Engineering and Research Institute of Marine Systems Engineering, Seoul National University, Seoul 08826, South Korea)

초록이 없습니다.

참고문헌 (31)

  1. Lee, Keunhwa, Park, Eungkyu, Seong, Woojae. High frequency measurements of sound speed and attenuation in water-saturated glass-beads of varying size. The Journal of the Acoustical Society of America, vol.126, no.1, EL28-EL33.

  2. Kimura, Masao. Velocity dispersion and attenuation in granular marine sediments: Comparison of measurements with predictions using acoustic models. The Journal of the Acoustical Society of America, vol.129, no.6, 3544-3561.

  3. Sessarego, Jean-Pierre, Guillermin, R.. High-Frequency Sound-Speed, Attenuation, and Reflection Measurements Using Water-Saturated Glass Beads of Different Sizes. IEEE journal of oceanic engineering, vol.37, no.3, 507-515.

  4. R. D. Stoll , Sediment Acoustics ( Springer-Verlag, Berlin, 1989), pp. 23-27. 

  5. 10.1007/978-0-387-36945-7 D. R. Jackson and M. D. Richardson , High Frequency Seafloor Acoustics ( Springer Science, New York, 2007), pp. 125-151. 

  6. Vander Meulen, François, Feuillard, Guy, Bou Matar, Olivier, Levassort, Franck, Lethiecq, Marc. Theoretical and experimental study of the influence of the particle size distribution on acoustic wave properties of strongly inhomogeneous media. The Journal of the Acoustical Society of America, vol.110, no.5, 2301-2307.

  7. Wentworth, Chester K.. A Scale of Grade and Class Terms for Clastic Sediments. The Journal of geology, vol.30, no.5, 377-392.

  8. Folk, Robert L.. The Distinction between Grain Size and Mineral Composition in Sedimentary-Rock Nomenclature. The Journal of geology, vol.62, no.4, 344-359.

  9. LeBlanc, Lester R., Mayer, Larry, Rufino, Manuel, Schock, Steven G., King, John. Marine sediment classification using the chirp sonar. The Journal of the Acoustical Society of America, vol.91, no.1, 107-115.

  10. Nicoletti, Denise, Bilgutay, Nihat, Onaral, Banu. Power-law relationships between the dependence of ultrasonic attenuation on wavelength and the grain size distribution. The Journal of the Acoustical Society of America, vol.91, no.6, 3278-3284.

  11. Ma, Y., Varadan, V. K., Varadan, V. V.. Application of Twersky’s multiple scattering formalism to a dense suspension of elastic particles in water. The Journal of the Acoustical Society of America, vol.75, no.2, 335-339.

  12. Folk, R. L., Ward, W. C.. Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of sedimentary petrology, vol.27, no.1, 3-26.

  13. Water Resour. Res. Sambrook Smith G. H. 1179 33 1997 10.1029/97WR00365 

  14. 71st Annual International Meeting, SEG Dvorkin J. 1764 2001 

  15. Leurer, Klaus C., Brown, Colin. Acoustics of marine sediment under compaction: Binary grain-size model and viscoelastic extension of Biot’s theory. The Journal of the Acoustical Society of America, vol.123, no.4, 1941-1951.

  16. Williams, K.L., Jackson, D.R., Thorsos, E.I., Tang, Dajun, Schock, S.G.. Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media. IEEE journal of oceanic engineering, vol.27, no.3, 413-428.

  17. Chotiros, Nicholas P., Isakson, Marcia J.. A broadband model of sandy ocean sediments: Biot-Stoll with contact squirt flow and shear drag. The Journal of the Acoustical Society of America, vol.116, no.4, 2011-2022.

  18. Buckingham, Michael J.. On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments. The Journal of the Acoustical Society of America, vol.122, no.3, 1486-1501.

  19. Schwartz, L., Plona, T. J.. Ultrasonic propagation in close-packed disordered suspensions. Journal of applied physics, vol.55, no.11, 3971-3977.

  20. Lee, Kang Il, Humphrey, Victor F., Kim, Byoung-Nam, Yoon, Suk Wang. Frequency dependencies of phase velocity and attenuation coefficient in a water-saturated sandy sediment from 0.3to1.0MHz. The Journal of the Acoustical Society of America, vol.121, no.5, 2553-2558.

  21. Coates, R., Mathams, R.F.. Design of matching networks for acoustic transducers. Ultrasonics, vol.26, no.2, 59-64.

  22. Buckingham, M.J., Richardson, M.D.. On tone-burst measurements of sound speed and attenuation in sandy marine sediments. IEEE journal of oceanic engineering, vol.27, no.3, 429-453.

  23. Del Grosso, V. A., Mader, C. W.. Speed of Sound in Pure Water. The Journal of the Acoustical Society of America, vol.52, no.b5, 1442-1446.

  24. Moussatov, Alexei, Guillon, Laurent, Ayrault, Christophe, Castagnède, Bernard. Experimental study of the dispersion of ultrasonic waves sandy sediments. Comptes rendus de l'Academie des sciences. Serie II. Mecanique, physique, astronomie, vol.326, no.7, 433-439.

  25. Sessarego, J.-P., Ivakin, A.N., Ferrand, D.. Frequency Dependence of Phase Speed, Group Speed, and Attenuation in Water-Saturated Sand: Laboratory Experiments. IEEE journal of oceanic engineering, vol.33, no.4, 359-366.

  26. Kimura, Masao. Erratum: Velocity dispersion and attenuation in granular marine sediments: Comparison of measurements with predictions using acoustic models [J. Acoust. Soc. Am. 129, 3544-3561 (2011)]. The Journal of the Acoustical Society of America, vol.135, no.4, 2126-2127.

  27. Fikioris, J. G., Waterman, P. C.. Multiple Scattering of Waves. II. ``Hole Corrections'' in the Scalar Case. Journal of mathematical physics, vol.5, no.10, 1413-1420.

  28. Tsang, L., Kong, J. A., Habashy, T.. Multiple scattering of acoustic waves by random distribution of discrete spherical scatterers with the quasicrystalline and Percus-Yevick approximation. The Journal of the Acoustical Society of America, vol.71, no.3, 552-558.

  29. McClements, David J.. Comparison of multiple scattering theories with experimental measurements in emulsions. The Journal of the Acoustical Society of America, vol.91, no.2, 849-853.

  30. Lee, Keunhwa, Yang, Haesang, Seong, Woojae. Acoustic Rayleigh scattering in water-saturated granular medium with quasicrystalline approximation. The Journal of the Acoustical Society of America, vol.137, no.5, EL367-EL373.

  31. Chotiros, Nicholas P., Isakson, Marcia J.. High-frequency dispersion from viscous drag at the grain-grain contact in water-saturated sand. The Journal of the Acoustical Society of America, vol.124, no.5, EL296-EL301.

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로