$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Antibacterial Efficacy of Silver Nanoparticles on Endometritis Caused by Prevotella melaninogenica and Arcanobacterum pyogenes in Dairy Cattle 원문보기

International journal of molecular sciences, v.19 no.4, 2018년, pp.1210 -   

Gurunathan, Sangiliyandi ,  Choi, Yun-Jung ,  Kim, Jin-Hoi

Abstract AI-Helper 아이콘AI-Helper

Bovine postpartum diseases remain one of the most significant and highly prevalent illnesses with negative effects on the productivity, survival, and welfare of dairy cows. Antibiotics are generally considered beneficial in the treatment of endometritis; however, frequent usage of each antibiotic dr...

주제어

참고문헌 (83)

  1. 1. Dohmen M.J. Joop K. Sturk A. Bols P.E. Lohuis J.A. Relationship between intra-uterine bacterial contamination, endotoxin levels and the development of endometritis in postpartum cows with dystocia or retained placenta Theriogenology 2000 54 1019 1032 10.1016/S0093-691X(00)00410-6 11131320 

  2. 2. Sheldon I.M. Noakes D.E. Rycroft A.N. Pfeiffer D.U. Dobson H. Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle Reproduction 2002 123 837 845 10.1530/rep.0.1230837 12052238 

  3. 3. Sheldon I.M. Dobson H. Postpartum uterine health in cattle Anim. Reprod. Sci. 2004 82–83 295 306 10.1016/j.anireprosci.2004.04.006 15271461 

  4. 4. Gilbert R.O. Shin S.T. Guard C.L. Erb H.N. Frajblat M. Prevalence of endometritis and its effects on reproductive performance of dairy cows Theriogenology 2005 64 1879 1888 10.1016/j.theriogenology.2005.04.022 15961149 

  5. 5. Sheldon I.M. Lewis G.S. LeBlanc S. Gilbert R.O. Defining postpartum uterine disease in cattle Theriogenology 2006 65 1516 1530 10.1016/j.theriogenology.2005.08.021 16226305 

  6. 6. Dubuc J. Duffield T.F. Leslie K.E. Walton J.S. LeBlanc S.J. Randomized clinical trial of antibiotic and prostaglandin treatments for uterine health and reproductive performance in dairy cows J. Dairy Sci. 2011 94 1325 1338 10.3168/jds.2010-3757 21338798 

  7. 7. Santos T.M. Bicalho R.C. Diversity and succession of bacterial communities in the uterine fluid of postpartum metritic, endometritic and healthy dairy cows PLoS ONE 2012 7 e53048 10.1371/journal.pone.0053048 23300859 

  8. 8. Huszenicza G. Fodor M. Gacs M. Kulcsar M. Dohmen M.J.W. Vamos M. Porkolab L. Kegl T. Bartyik J. Lohuis J. Uterine bacteriology, resumption of cyclic ovarian activity and fertility in postpartum cows kept in large-scale dairy herds Reprod. Domest. Anim. 1999 34 237 245 10.1111/j.1439-0531.1999.tb01246.x 

  9. 9. Agarwal R.G. Bajaj N.K. Thakur M.S. Gupta R. Gupta D.K. Diagnosis and treatment of bovine endometritis Intas Polivet 2013 14 25 30 

  10. 10. Singh K.P. Singh B. Singh S.V. Singh J.P. Singh P. Singh H.N. Evaluation of Anti-microbials in Treatment and Improving Conception rate in Endometritic Crossbred cows Intas Polivet 2014 15 79 83 

  11. 11. Yah C.S. Simate G.S. Nanoparticles as potential new generation broad spectrum antimicrobial agents DARU J. Pharm. Sci. 2015 23 43 10.1186/s40199-015-0125-6 26329777 

  12. 12. Gurunathan S. Biologically synthesized silver nanoparticles enhances antibiotic activity against gram-negative bacteria J. Ind. Eng. Chem. 2015 29 217 226 10.1016/j.jiec.2015.04.005 

  13. 13. Hill E.K. Li J. Current and future prospects for nanotechnology in animal production J. Anim. Sci. Biotechnol. 2017 8 26 10.1186/s40104-017-0157-5 28316783 

  14. 14. Bengtsson B. Greko C. Antibiotic resistance—Consequences for animal health, welfare, and food production Upsala J. Med. Sci. 2014 119 96 102 10.3109/03009734.2014.901445 24678738 

  15. 15. Runyoro D.K. Matee M.I. Ngassapa O.D. Joseph C.C. Mbwambo Z.H. Screening of Tanzanian medicinal plants for anti-Candida activity BMC Complement. Altern. Med. 2006 6 11 10.1186/1472-6882-6-11 16571139 

  16. 16. Mabona U. Viljoen A. Shikanga E. Marston A. Van Vuuren S. Antimicrobial activity of Southern African medicinal plants with dermatological relevance: From an ethnopharmacological screening approach, to combination studies and the isolation of a bioactive compound J. Ethnopharmacol. 2013 148 45 55 10.1016/j.jep.2013.03.056 23545456 

  17. 17. Nazzaro F. Fratianni F. de Martino L. Coppola R. de Feo V. Effect of essential oils on pathogenic bacteria Pharmaceuticals 2013 6 1451 1474 10.3390/ph6121451 24287491 

  18. 18. Naidu Krishna S. Govender P. Adam J.K. Nano silver particles in biomedical and clinical applications J. Pure Appl. Microbiol. 2015 9 103 112 

  19. 19. Narducci D. An introduction to nanotechnologies: What’s in it for us? Vet. Res. Commun. 2007 31 131 137 10.1007/s11259-007-0082-8 17682860 

  20. 20. Leid J.G. Ditto A.J. Knapp A. Shah P.N. Wright B.D. Blust R. Christensen L. Clemons C.B. Wilber J.P. Young G.W. In vitro antimicrobial studies of silver carbene complexes: Activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria J. Antimicrob. Chemother. 2012 67 138 148 10.1093/jac/dkr408 21972270 

  21. 21. Gurunathan S. Han J. Park J.H. Kim J.H. A green chemistry approach for synthesizing biocompatible gold nanoparticles Nanoscale Res. Lett. 2014 9 248 10.1186/1556-276X-9-248 24940177 

  22. 22. Zhang X.F. Shen W. Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: An in vitro model Int. J. Mol. Sci. 2016 17 1603 10.3390/ijms17101603 27669221 

  23. 23. Yuan Y.G. Peng Q.L. Gurunathan S. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy Int. J. Mol. Sci. 2017 18 569 10.3390/ijms18030569 28272303 

  24. 24. Gurunathan S. Han J.W. Kwon D.N. Kim J.H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against gram-negative and gram-positive bacteria Nanoscale Res. Lett. 2014 9 373 10.1186/1556-276X-9-373 25136281 

  25. 25. Kalishwaralal K. BarathManiKanth S. Pandian S.R.K. Deepak V. Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis Colloids Surf. B Biointerfaces 2010 79 340 344 10.1016/j.colsurfb.2010.04.014 20493674 

  26. 26. Vidhu V.K. Aromal S.A. Philip D. Green synthesis of silver nanoparticles using Macrotyloma uniflorum Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011 83 392 397 10.1016/j.saa.2011.08.051 21920808 

  27. 27. Mittal A.K. Kumar S. Banerjee U.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential J. Colloid Interface Sci. 2014 431 194 199 10.1016/j.jcis.2014.06.030 25000181 

  28. 28. Liu Y.-S. Chang Y.-C. Chen H.-H. Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants J. Food Drug Anal. 2017 10.1016/j.jfda.2017.07.005 29567234 

  29. 29. Gurunathan S. Kalishwaralal K. Vaidyanathan R. Venkataraman D. Pandian S.R.K. Muniyandi J. Hariharan N. Eom S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli Colloids Surf. B Biointerfaces 2009 74 328 335 10.1016/j.colsurfb.2009.07.048 19716685 

  30. 30. Wani I.A. Ganguly A. Ahmed J. Ahmad T. Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies Mater. Lett. 2011 65 520 522 10.1016/j.matlet.2010.11.003 

  31. 31. Gurunathan S. Woong Han J. Kim E. Kwon D.N. Park J.K. Kim J.H. Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene J. Nanobiotechnol. 2014 12 41 10.1186/s12951-014-0041-9 25273520 

  32. 32. Jyoti K. Baunthiyal M. Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics J. Radiat. Res. Appl. Sci. 2016 9 217 227 10.1016/j.jrras.2015.10.002 

  33. 33. Gurunathan S. Han J.W. Park J.H. Kim E. Choi Y.-J. Kwon D.-N. Kim J.-H. Reduced graphene oxide–silver nanoparticle nanocomposite: A potential anticancer nanotherapy Int. J. Nanomed. 2015 10 6257 6276 10.2147/IJN.S92449 26491296 

  34. 34. Khlebtsov B. Khanadeev V. Khlebtsov N. Tunable depolarized light scattering from gold and gold/silver nanorods Phys. Chem. Chem. Phys. PCCP 2010 12 3210 3218 10.1039/b925102b 20237711 

  35. 35. Williams E.J. Fischer D.P. Pfeiffer D.U. England G.C.W. Noakes D.E. Dobson H. Sheldon I.M. Clinical evaluation of postpartum vaginal mucus reflects uterine bacterial infection and the immune response in cattle Theriogenology 2005 63 102 117 10.1016/j.theriogenology.2004.03.017 15589277 

  36. 36. Sharma N. Malik D. Bhandu A. Batra N. Behal A. Screening and partial characterization of natural isolates of lactic acid bacteria for bacteriocin production Int. Food Res. J. 2017 24 915 920 

  37. 37. Udhayavel S. Malmarugan S. Palanisamy K. Rajeswar J. Antibiogram Pattern of Bacteria Causing Endometritis in Cows Vet. World 2013 6 100 102 10.5455/vetworld.2013.100-102 

  38. 38. Gurunathan S. Jeong J.-K. Han J.W. Zhang X.-F. Park J.H. Kim J.-H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori , Helicobacter felis , and human lung (L132) and lung carcinoma A549 cells Nanoscale Res. Lett. 2015 10 35 10.1186/s11671-015-0747-0 25852332 

  39. 39. Kim J.S. Kuk E. Yu K.N. Kim J.H. Park S.J. Lee H.J. Antimicrobial effects of silver nanoparticles Nanomedicine 2007 3 95 101 10.1016/j.nano.2006.12.001 17379174 

  40. 40. Gurunathan S. Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans Arab. J. Chem. 2014 10.1016/j.arabjc.2014.11.014 

  41. 41. Niska K. Knap N. Kędzia A. Jaskiewicz M. Kamysz W. Inkielewicz-Stepniak I. Capping agent-dependent toxicity and antimicrobial activity of silver nanoparticles: An in vitro study. Concerns about potential application in dental practice Int. J. Med. Sci. 2016 13 772 782 10.7150/ijms.16011 27766027 

  42. 42. Strydom S.J. Rose W.E. Otto D.P. Liebenberg W. de Villiers M.M. Poly(amidoamine) dendrimer-mediated synthesis and stabilization of silver sulfonamide nanoparticles with increased antibacterial activity Nanomed. Nanotechnol. Biol. Med. 2013 9 85 93 10.1016/j.nano.2012.03.006 22470054 

  43. 43. Mohanty S. Mishra S. Jena P. Jacob B. Sarkar B. Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles Nanomed. Nanotechnol. Biol. Med. 2012 8 916 924 10.1016/j.nano.2011.11.007 22115597 

  44. 44. Høiby N. Ciofu O. Johansen H.K. Song Z.J. Moser C. Jensen P.Ø. Molin S. Givskov M. Tolker-Nielsen T. Bjarnsholt T. The clinical impact of bacterial biofilms Int. J. Oral Sci. 2011 3 55 65 10.4248/IJOS11026 21485309 

  45. 45. Khan Z. Singh T. Hussain J.I. Obaid A.Y. Al-Thabaiti S.A. El-Mossalamy E.H. Starch-directed green synthesis, characterization and morphology of silver nanoparticles Colloids Surf. B Biointerfaces 2013 102 578 584 10.1016/j.colsurfb.2012.08.057 23104028 

  46. 46. Martínez-Gutiérrez F. Boegli L. Agostinho A. Sánchez E. Bach H. Ruiz F. James G. Anti-biofilm activity of silver nanoparticles against different microorganisms Biofouling 2013 29 651 660 10.1080/08927014.2013.794225 23731460 

  47. 47. Abdullah Al M. Sugimoto S. Higashi C. Matsumoto S. Sonomoto K. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK Appl. Environ. Microbiol. 2010 76 4277 4285 10.1128/AEM.02878-09 20453133 

  48. 48. Holt K.B. Bard A.J. Interaction of silver(I) ions with the respiratory chain of Escherichia coli : An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag + Biochemistry 2005 44 13214 13223 10.1021/bi0508542 16185089 

  49. 49. Li W.-R. Xie X.-B. Shi Q.-S. Zeng H.-Y. Ou-Yang Y.-S. Chen Y.-B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli Appl. Microbiol. Biotechnol. 2010 85 1115 1122 10.1007/s00253-009-2159-5 19669753 

  50. 50. Kim K.J. Sung W.S. Moon S.K. Choi J.S. Kim J.G. Lee D.G. Antifungal effect of silver nanoparticles on dermatophytes J. Microbiol. Biotechnol. 2008 18 1482 1484 18756112 

  51. 51. Kim S.H. Lee H.S. Ryu D.S. Choi S.J. Lee D.S. Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli Korean J. Microbiol. Biotechnol. 2011 39 77 85 

  52. 52. Brynildsen M.P. Winkler J.A. Spina C.S. MacDonald I.C. Collins J.J. Potentiating antibacterial activity by predictably enhancing endogenous microbial ros production Nat. Biotechnol. 2013 31 160 165 10.1038/nbt.2458 23292609 

  53. 53. Mempin R. Tran H. Chen C. Gong H. Kim Ho K. Lu S. Release of extracellular ATP by bacteria during growth BMC Microbiol. 2013 13 301 10.1186/1471-2180-13-301 24364860 

  54. 54. Vardanyan Z. Gevorkyan V. Ananyan M. Vardapetyan H. Trchounian A. Effects of various heavy metal nanoparticles on Enterococcus hirae and Escherichia coli growth and proton-coupled membrane transport J. Nanobiotechnol. 2015 13 69 10.1186/s12951-015-0131-3 26474562 

  55. 55. Kohanski M.A. Dwyer D.J. Hayete B. Lawrence C.A. Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics Cell 2007 130 797 810 10.1016/j.cell.2007.06.049 17803904 

  56. 56. Zhang X.-F. Shen W. Gurunathan S. Biologically synthesized gold nanoparticles ameliorate cold and heat stress-induced oxidative stress in Escherichia coli Molecules 2016 21 731 10.3390/molecules21060731 27271586 

  57. 57. Kim Y. Sun H. Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan Aging Cell 2007 6 489 503 10.1111/j.1474-9726.2007.00302.x 17608836 

  58. 58. Belenky P. Ye J.D. Porter C.B.M. Cohen N.R. Lobritz M.A. Ferrante T. Jain S. Korry B.J. Schwarz E.G. Walker G.C. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage Cell Rep. 2015 13 968 980 10.1016/j.celrep.2015.09.059 26565910 

  59. 59. Curtis J.M. Hahn W.S. Long E.K. Burrill J.S. Arriaga E.A. Bernlohr D.A. Protein carbonylation and metabolic control systems Trends Endocrinol. Metab. 2012 23 399 406 10.1016/j.tem.2012.05.008 22742812 

  60. 60. Fedorova M. Bollineni R.C. Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: Update of analytical strategies Mass Spectrom. Rev. 2014 33 79 97 10.1002/mas.21381 23832618 

  61. 61. Holden J.K. Li H. Jing Q. Kang S. Richo J. Silverman R.B. Poulos T.L. Structural and biological studies on bacterial nitric oxide synthase inhibitors Proc. Natl. Acad. Sci. USA 2013 110 18127 18131 10.1073/pnas.1314080110 24145412 

  62. 62. Angel Villegas N. Baronetti J. Albesa I. Etcheverría A. Becerra M.C. Padola N.L. Paraje M.G. Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157:H7 and non-O157 biofilms Toxicol. In Vitro 2015 29 1692 1700 10.1016/j.tiv.2015.06.025 26130220 

  63. 63. Davies K.J. An overview of oxidative stress IUBMB Life 2000 50 241 244 10.1080/15216540051080895 11327316 

  64. 64. Masip L. Veeravalli K. Georgiou G. The many faces of glutathione in bacteria Antioxid. Redox Signal. 2006 8 753 762 10.1089/ars.2006.8.753 16771667 

  65. 65. Banerjee M. Mallick S. Paul A. Chattopadhyay A. Ghosh S.S. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan−silver nanoparticle composite Langmuir ACS J. Surf. Colloids 2010 26 5901 5908 10.1021/la9038528 20085297 

  66. 66. Quinteros M.A. Cano Aristizábal V. Dalmasso P.R. Paraje M.G. Páez P.L. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity Toxicol. In Vitro 2016 36 216 223 10.1016/j.tiv.2016.08.007 27530963 

  67. 67. Ramalingam B. Parandhaman T. Das S.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2016 8 4963 4976 10.1021/acsami.6b00161 26829373 

  68. 68. Stambe C. Atkins R.C. Tesch G.H. Masaki T. Schreiner G.F. Nikolic-Paterson D.J. The role of p38alpha mitogen-activated protein kinase activation in renal fibrosis J. Am. Soc. Nephrol. JASN 2004 15 370 379 10.1097/01.ASN.0000109669.23650.56 14747383 

  69. 69. Sudheer Khan S. Ghouse S.S. Chandran P. Toxic effect of environmentally relevant concentration of silver nanoparticles on environmentally beneficial bacterium Pseudomonas putida Bioprocess Biosyst. Eng. 2015 38 1243 1249 10.1007/s00449-015-1365-z 25627470 

  70. 70. Neeley W.L. Essigmann J.M. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products Chem. Res. Toxicol. 2006 19 491 505 10.1021/tx0600043 16608160 

  71. 71. Cadet J. Douki T. Gasparutto D. Ravanat J.-L. Oxidative damage to DNA: Formation, measurement and biochemical features Mutat. Res./Fundam. Mol. Mech. Mutagen. 2003 531 5 23 10.1016/j.mrfmmm.2003.09.001 

  72. 72. Foti J.J. Devadoss B. Winkler J.A. Collins J.J. Walker G.C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics Science 2012 336 315 319 10.1126/science.1219192 22517853 

  73. 73. Haghdoost S. Sjölander L. Czene S. Harms-Ringdahl M. The nucleotide pool is a significant target for oxidative stress Free Radic. Biol. Med. 2006 41 620 626 10.1016/j.freeradbiomed.2006.05.003 16863995 

  74. 74. Tanaka M. Chock P.B. Stadtman E.R. Oxidized messenger rna induces translation errors Proc. Natl. Acad. Sci. USA 2007 104 66 71 10.1073/pnas.0609737104 17190801 

  75. 75. Naha P.C. Byrne H.J. Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro Aquat. Toxicol. 2013 132–133 61 72 10.1016/j.aquatox.2013.01.020 23454648 

  76. 76. Gurunathan S. Kim J.-H. Graphene oxide–silver nanoparticles nanocomposite stimulates differentiation in human neuroblastoma cancer cells (SH-SY5Y) Int. J. Mol. Sci. 2017 18 2549 10.3390/ijms18122549 29182571 

  77. 77. Jeyaraj M. Varadan S. Anthony K.J.P. Murugan M. Raja A. Gurunathan S. Antimicrobial and anticoagulation activity of silver nanoparticles synthesized from the culture supernatant of Pseudomonas aeruginosa J. Ind. Eng. Chem. 2013 19 1299 1303 10.1016/j.jiec.2012.12.031 

  78. 78. Nallbani K. Turmalaj L. Post Partum Bacteriology in Cows (Preliminary Date) Int. J. Angl. 2016 5 14 16 

  79. 79. Santos T.M. Caixeta L.S. Machado V.S. Rauf A.K. Gilbert R.O. Bicalho R.C. Antimicrobial resistance and presence of virulence factor genes in Arcanobacterium pyogenes isolated from the uterus of postpartum dairy cows Vet. Microbiol. 2010 145 84 89 10.1016/j.vetmic.2010.03.001 20346602 

  80. 80. Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar Anal. Chem. 1959 31 426 428 10.1021/ac60147a030 

  81. 81. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem. 1976 72 248 256 10.1016/0003-2697(76)90527-3 942051 

  82. 82. Maisonneuve E. Fraysse L. Lignon S. Capron L. Dukan S. Carbonylated proteins are detectable only in a degradation-resistant aggregate state in Escherichia coli J. Bacteriol. 2008 190 6609 6614 10.1128/JB.00588-08 18689474 

  83. 83. Chen F. Kuhn D.C. Sun S.C. Gaydos L.J. Demers L. Dependence and reversal of nitric oxide production on NF-κB in silica and lipopolysaccharide induced macrophages Biochem. Biophys. Res. Commun. 1995 214 839 846 10.1006/bbrc.1995.2363 7575553 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로