$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Investigations of line scanning proton therapy with dynamic multi-leaf collimator

Physica medica : European journal of medical physics, v.55, 2018년, pp.47 - 55  

Kim, Dae-Hyun (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea) ,  Park, Seyjoon (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea) ,  Jo, Kwanghyun (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea) ,  Cho, Sungkoo (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea) ,  Shin, EunHyuk (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea) ,  Lim, Do Hoon (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea) ,  Pyo, HongRyull (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea) ,  Han, Youngyih (Department of Radiation Oncology, Samsung Medical Cente) ,  Suh, Tae-Suk

Abstract AI-Helper 아이콘AI-Helper

Abstract Purpose Scanning proton therapy has dosimetric advantage over passive treatment, but has a large penumbra in low-energy region. This study investigates the penumbra reduction when multi-leaf collimators (MLCs) are used for line scanning proton beams and secondary neutron production from ML...

주제어

참고문헌 (38)

  1. Med Phys Kanai 7 4 365 1980 10.1118/1.594693 Spot scanning system for proton radiotherapy 

  2. Med Phys Pedroni 22 1 37 1995 10.1118/1.597522 The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization 

  3. Z Med Phys Pedroni 14 25 2004 10.1078/0939-3889-00194 The PSI gantry 2: a second generation proton scanning gantry 

  4. Med Phys Lomax 31 11 3150 2004 10.1118/1.1779371 Treatment planning and verification of proton therapy using spot scanning: initial experiences 

  5. Med Phys Gillin 37 1 154 2010 10.1118/1.3259742 Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston 

  6. Phys Med Shimizu 30 555 2014 10.1016/j.ejmp.2014.04.002 Preliminary analysis for integration of spot-scanning proton beam therapy and real-time imaging and gating 

  7. Phys Med Klodowska 31 621 2015 10.1016/j.ejmp.2015.04.006 Proton microbeam radiotherapy with scanned pencil-beams - Monte Carlo simulations 

  8. Phys Med Russo 34 48 2017 10.1016/j.ejmp.2017.01.011 Characterization of commercial scintillation detector for 2-D dosimetry in scanned proton and carbon ion beams 

  9. Phys Med Flejmer 2017 10.1016/j.ejmp.2017.06.001 Impact of physiological breating motion for breast cancer radiotherapy with proton beam scanning - an in silico study 

  10. Int J Radiat Oncol Biol Phys Baumert 60 4 1314 2004 10.1016/j.ijrobp.2004.06.212 Dose conformation of intensity-modulated stereotactic photon beams, proton beams, and intensity-modulated proton beams for intracranial lesions 

  11. Int J Radiat Oncol Biol Phys MacDonald 71 4 979 2008 10.1016/j.ijrobp.2007.11.065 Proton radiotherapy for childhood ependymoma: Initial clinical outcomes and dose comparisons 

  12. Int J Radiat Oncol Biol Phys Zhang 77 2 357 2009 10.1016/j.ijrobp.2009.04.028 

  13. Int J Radiat Oncol Biol Phys Water 79 4 1216 2011 10.1016/j.ijrobp.2010.05.012 Potential benefits of scanned intensity-modulated proton therapy versus advanced photon therapy with regard to sparing of the salivary glands in oropharyngeal cancer 

  14. Int J Radiat Oncol Biol Phys Boehling 82 2 643 2012 10.1016/j.ijrobp.2010.11.027 Dosimetric comparison of three-dimensional conformal proton radiotherapy, intensity-modulated proton therapy, and intensity-modulated radiotherapy for treatment of pediatric craniopharyngiomas 

  15. Phys Med Biol Arjomandy 54 N295 2009 10.1088/0031-9155/54/14/N02 Comparison of surface doses from spot scanning and passively scattered proton therapy beams 

  16. Int J Radiat Oncol Biol Phys Schneider 53 1 244 2002 10.1016/S0360-3016(01)02826-7 Secondary neutron dose during proton therapy using spot scanning 

  17. Int J Radiat Oncol Biol Phys Shin 74 1 260 2009 10.1016/j.ijrobp.2008.10.090 Secondary neutron doses for several beam configurations for proton therapy 

  18. Phys Med Biol Safai 53 1729 2008 10.1088/0031-9155/53/6/016 Comparison between the lateral penumbra of a collimated double-scattered beam and uncollimated scanning beam in proton radiotherapy 

  19. Phys Med Biol Dowdell 57 2829 2012 10.1088/0031-9155/57/10/2829 Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy 

  20. Radiat Prot Dosim Bues 115 1-4 164 2005 10.1093/rpd/nci259 Therapeutic step and shoot proton beam spot-scanning with a multi-leaf collimator: a Monte Carlo study 

  21. Med Phys Daartz 36 5 1886 2009 10.1118/1.3116382 Characterization of a mini-multileaf collimator in a proton beamline 

  22. Med Phys Hyer 41 9 2014 10.1118/1.4837155 A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: proof of concept 

  23. Radiat Phys Chem Lin 140 290 2017 10.1016/j.radphyschem.2017.01.025 Ambient neutron dose equivalent during proton therapy using wobbling scanning system: measurements and calculations 

  24. Med Phys Kanai 10 3 344 1983 10.1118/1.595254 Broad beam three-dimensional irradiation for proton radiotherapy 

  25. Nucl Instr Meth Phys Res A Futami 430 143 1999 10.1016/S0168-9002(99)00194-1 Broad-beam three-dimensional irradiation system for heavy-ion radiotherapy at HIMAC 

  26. Med Phys Kanematsu 29 12 2823 2002 10.1118/1.1521938 Treatment planning for the layer-stacking irradiation system for three-dimensional conformal heavy-ion radiotherapy 

  27. Med Phys Kanai 33 8 2989 2006 10.1118/1.2219771 Commissioning of a conformal irradiation system for heavy-ion radiotherapy using a layer-stacking method 

  28. Med Phys Farr 35 11 4945 2008 10.1118/1.2982248 Clinical characterization of a proton beam continuous uniform scanning system with dose layer stacking 

  29. Phys Med Baumer 43 15 2017 10.1016/j.ejmp.2017.09.136 Comprehensive clinical commissioning and validation of the RayStation treatment planning system for proton therapy with active scanning and passive treatment techniques 

  30. Nucl Instr Meth Phys Res A Agostinelli 506 250 2003 10.1016/S0168-9002(03)01368-8 GEANT4 - a simulation toolkit 

  31. Phys Med Biol Jarlskog 53 693 2008 10.1088/0031-9155/53/3/012 Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms 

  32. Radiat Phys Chem Ribeiro 139 179 2017 10.1016/j.radphyschem.2017.05.021 Comparison of the neutron ambient dose equivlanet and ambient absorbed dose calculations with different GEANT4 physics lists 

  33. PLoS ONE Kim 13 3 2018 Proton range verification in inhomogeneous tissue: treatment planning vs. measurement vs. Monte Carlo simulation 

  34. 10.1016/S0146-6453(96)90003-2 International Commission on Radiological Protection. Conversion coefficients for use in radiological protection against external radiation, ICRP Publ 74 Ann ICRT, 26 (3-4), 1996. 

  35. Med Phys Oozeer 24 10 1599 1997 10.1118/1.597967 A model for the lateral penumbra in water of a 200 MeV proton beam devoled to clinical applications 

  36. Phys Med Biol Hyer 59 N187 2014 10.1088/0031-9155/59/22/N187 Effects of spot size and spot spacing on lateral penumbra reduction when using a dynamic collimation system for spot scanning proton therapy 

  37. Phys Med Biol Zheng 52 4481 2007 10.1088/0031-9155/52/15/008 Monte Carlo study of neutron dose equivalent during passive scattering proton therapy 

  38. Phys Med Biol Brenner 54 6065 2009 10.1088/0031-9155/54/20/003 Paganetti H. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator 

LOADING...

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로