$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Microstructure and Mechanical Properties of a High-Mn TWIP Steel Subjected to Cold Rolling and Annealing 원문보기

Metals, v.7 no.12, 2017년, pp.571 -   

Kalinenko, Alexander (Laboratory of Mechanical Properties of Nanostructured Materials and Superalloys, Belgorod State University, Pobeda 85, Belgorod 308015, Russia) ,  Kusakin, Pavel (Laboratory of Mechanical Properties of Nanostructured Materials and Superalloys, Belgorod State University, Pobeda 85, Belgorod 308015, Russia) ,  Belyakov, Andrey (Laboratory of Mechanical Properties of Nanostructured Materials and Superalloys, Belgorod State University, Pobeda 85, Belgorod 308015, Russia) ,  Kaibyshev, Rustam (Laboratory of Mechanical Properties of Nanostructured Materials and Superalloys, Belgorod State University, Pobeda 85, Belgorod 308015, Russia) ,  Molodov, Dmitri (Institute of Physical Metallurgy and Metal Physics, RWTH Aachen University, Kopernikusstraße 14, Aachen 52056, Germany)

Abstract AI-Helper 아이콘AI-Helper

The structure-property relationship was studied in an Fe-18Mn-0.6C-1.5Al steel subjected to cold rolling to various total reductions from 20% to 80% and subsequent annealing for 30 min at temperatures of 673 to 973 K. The cold rolling resulted in significant strengthening of the steel. The hardness ...

참고문헌 (37)

  1. Frommeyer High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-Properties-Application Int. J. Plast. 2000 10.1016/S0749-6419(00)00015-2 16 1391 

  2. Bouaziz High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships Curr. Opin. Solid State Mater. Sci. 2011 10.1016/j.cossms.2011.04.002 15 141 

  3. Kusakin High-Mn twinning-induced plasticity steels: Microstructure and mechanical properties Rev. Adv. Mater. Sci. 2016 44 326 

  4. Estrin Twinning-induced plasticity (TWIP) steels Acta Mater. 2018 10.1016/j.actamat.2017.06.046 142 283 

  5. Hofmann Advanced cold rolled steels for automotive applications Steel Res. Int. 2009 80 22 

  6. Nikulin Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy Int. J. Fatigue 2016 10.1016/j.ijfatigue.2016.03.021 88 132 

  7. Ryan Dynamic softening mechanisms in 304 austenitic stainless steel Can. Metall. Q. 1990 10.1179/cmq.1990.29.2.147 29 147 

  8. Belyakov Regularities of Grain Refinement in an Austenitic Stainless Steel during Multiple Warm Working Mater. Sci. Forum 2013 10.4028/www.scientific.net/MSF.753.411 753 411 

  9. Sakai Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions Prog. Mater. Sci. 2014 10.1016/j.pmatsci.2013.09.002 60 130 

  10. Aernoudt Large strain work hardening and textures Prog. Mater. Sci. 1980 10.1016/0079-6425(80)90001-8 25 69 

  11. Frommeyer Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes ISIJ Int. 2003 10.2355/isijinternational.43.438 43 438 

  12. Mosecker Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part I. mechanism maps and work-hardening behavior Metall. Mater. Trans. A 2012 10.1007/s11661-011-0993-4 43 1688 

  13. Kusakin Advanced thermomechanical processing for a high-Mn austenitic steel Metall. Mater. Trans. A 2016 10.1007/s11661-016-3794-y 47 5704 

  14. Kusakin Influence of cold forging and annealing on microstructure and mechanical properties of a high-Mn TWIP steel Kov. Mater. 2017 55 161 

  15. Torganchuk Effect of rolling temperature on microstructure and mechanical properties of 18%Mn TWIP/TRIP steels Mater. Sci. Eng. A 2017 10.1016/j.msea.2017.09.122 708 110 

  16. Kusakin Microstructure evolution and strengthening mechanisms of Fe-23Mn-0.3C-1.5Al TWIP steel during cold rolling Mater. Sci. Eng. A 2014 10.1016/j.msea.2014.08.051 617 52 

  17. Yanushkevich Structural/textural changes and strengthening of an advanced high-Mn steel subjected to cold rolling Mater. Sci. Eng. A 2016 10.1016/j.msea.2015.11.027 651 763 

  18. Sakai Dynamic recrystallization microstructures under hot working conditions J. Mater. Process. Technol. 1995 10.1016/0924-0136(95)01992-N 53 349 

  19. Belyakov Microstructure evolution in ferritic stainless steels during large strain deformation Mater. Trans. 2004 10.2320/matertrans.45.2812 45 2812 

  20. Haase Tailoring the mechanical properties of a twinning-induced plasticity steel by retention of deformation twins during heat treatment Metall. Mater. Trans. A 2013 10.1007/s11661-013-1935-0 44 4445 

  21. 10.1016/B978-008044164-1/50016-5 Humphreys, F.J., and Hatherly, M. (2004). Recrystallization and Related Annealing Phenomena, Elsevier. [2nd ed.]. 

  22. Hall The deformation and ageing of mild steel: III discussion of results Proc. R. Soc. Lond. Ser. B 1951 10.1088/0370-1301/64/9/303 64 747 

  23. Petch The cleavage strength of polycrystals J. Iron Steel Inst. 1953 174 25 

  24. Yanushkevich Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel Mater. Charact. 2016 10.1016/j.matchar.2015.12.021 112 180 

  25. Shakhova Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel Mater. Sci. Eng. A 2012 10.1016/j.msea.2012.02.101 545 176 

  26. Odnobokova Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling Mater. Sci. Eng. A 2017 10.1016/j.msea.2017.02.073 689 370 

  27. Mecking Kinetics of flow and strain-hardening Acta Metall. 1981 10.1016/0001-6160(81)90112-7 29 1865 

  28. Estrin A dislocation-based model for all hardening stages in large strain deformation Acta Mater. 1998 10.1016/S1359-6454(98)00196-7 46 5509 

  29. Haase Applying the texture analysis for optimizing thermomechanical treatment of high manganese twinning-induced plasticity steel Acta Mater. 2014 10.1016/j.actamat.2014.07.068 80 327 

  30. Ardell Precipitation hardening Metall. Trans. A 1985 10.1007/BF02670416 16 2131 

  31. Ma Distinct hardening behavior of ultrafine-grained Al-Zn-Mg-Cu alloy Metall. Mater. Trans. A 2014 10.1007/s11661-014-2498-4 45 4762 

  32. Shakhova On strengthening of austenitic stainless steel by large strain cold working ISIJ Int. 2016 10.2355/isijinternational.ISIJINT-2016-095 56 1289 

  33. Calcagnotto Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD Mater. Sci. Eng. A 2010 10.1016/j.msea.2010.01.004 527 2738 

  34. Hansen Hall-Petch relation and boundary strengthening Scr. Mater. 2004 10.1016/j.scriptamat.2004.06.002 51 801 

  35. Morozova Grain refinement and strengthening of a Cu-0.1Cr-0.06Zr alloy subjected to equal channel angular pressing Philos. Mag. 2017 10.1080/14786435.2017.1324649 97 2053 

  36. Starink Dislocation versus grain boundary strengthening in SPD processed metals: Non-causal relation between grain size and strength of deformed polycrystals Mater. Sci. Eng. A 2017 10.1016/j.msea.2017.08.069 705 42 

  37. Yanushkevich Hall-Petch relationship for austenitic stainless steels processed by large strain warm rolling Acta Mater. 2017 10.1016/j.actamat.2017.06.060 136 39 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로