$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos 원문보기

International journal of molecular sciences, v.18 no.2, 2017년, pp.385 -   

Ng, Candy Yuen Ping (Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China) ,  Cheng, Shuk Han (yuenpng3-c@my.cityu.edu.hk) ,  Yu, Kwan Ngok (Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China)

Abstract AI-Helper 아이콘AI-Helper

Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embr...

주제어

참고문헌 (58)

  1. 1. Geetanjali P. Sarma A. Chatterjee A. The influence of reduced glutathione on chromosome damage induced by X-rays or heavy ion beams of different LETs and on the interaction of DNA lesions induced by radiations and bleomycin Mutat. Res. 2010 696 154 159 20100593 

  2. 2. Barendsen G.N. Beusker T.L.J. Vergroesen A.J. Budke L. Effects of different ionizing radiations on human cells in tissue culture. II. Biological experiments Radiat. Res. 1960 13 841 849 10.2307/3570859 13686930 

  3. 3. Geard C.R. Chromosomal aberration production by “track segment” charged particles as a function of linear energy transfer Radiat. Prot. Dosim. 1985 13 1 4 

  4. 4. Hendry J.H. Simon S.L. Wojcik A. Sohrabi M. Burkart W. Cardis E. Laurier D. Tirmarche M. Hayata I. Human exposure to high natural background radiation: What can it teach us about radiation risks? J. Radiol. Prot. 2009 29 A29 A42 10.1088/0952-4746/29/2A/S03 19454802 

  5. 5. Yu K.N. Guan Z.J. Stokes M.J. Young E.C.M. The assessment of the natural radiation dose committed to the Hong Kong people J. Environ. Radioact. 1992 17 31 48 10.1016/0265-931X(92)90033-P 

  6. 6. Yu K.N. Chan T.F. Young E.C.M. The variation of radon exhalation rates from building surfaces of different ages Health Phys. 1995 68 716 718 10.1097/00004032-199505000-00013 7730070 

  7. 7. Yu K.N. Young E.C.M. Li K.C. A study of factors affecting indoor radon properties Health Phys. 1996 71 179 184 10.1097/00004032-199608000-00008 8690600 

  8. 8. Yu K.N. Young E.C.M. Stokes M.J. Guan Z.J. Cho K.W. A survey of radon and thoron progeny for dwellings in Hong Kong Health Phys. 1997 73 373 377 10.1097/00004032-199708000-00010 9228173 

  9. 9. Yu K.N. Nikezic D. Ng F.M.F. Leung J.K.C. Long-term measurements of radon progeny concentrations with solid-state nuclear track detectors Radiat. Meas. 2005 40 560 568 10.1016/j.radmeas.2005.03.007 

  10. 10. Yu K.N. Lau B.M.F. Nikezic D. Assessment of environmental radon hazard using human respiratory tract models J. Hazard. Mater. 2006 132 98 110 10.1016/j.jhazmat.2005.11.087 16427190 

  11. 11. Durante M. Cucinotta F.A. Heavy ion carcinogenesis and human space exploration Nat. Rev. Cancer 2008 8 465 472 10.1038/nrc2391 18451812 

  12. 12. Simonsen L.C. Wilson J.W. Kim M.H. Cucinotta F.A. Radiation exposure for human mars exploration Health Phys. 2000 79 515 525 10.1097/00004032-200011000-00008 11045525 

  13. 13. Coderre J.A. Morris G.M. The radiation biology of boron neutron capture therapy Radiat. Res. 1999 151 1 18 10.2307/3579742 9973079 

  14. 14. Durand R.E. Olive P.L. Irradiation of multi-cell spheroids with fast neutrons versus X-rays: A qualitative difference in sub-lethal damage repair capacity or kinetics Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1976 30 589 592 10.1080/09553007614551481 1087298 

  15. 15. Ngo F.Q.H. Elkind M.M. Damage interaction in V79 Chinese hamster cells resulting from the combined exposure to X-rays and fast neutrons (Abstract Gg-5) Radiat. Res. 1977 70 706 707 

  16. 16. McNally N.J. Deronde J. Hinchliffe M. The effect of sequential irradiation with X-rays and fast neutrons on the survival of V79 Chinese hamster cells Int. J. Radiat. Biol. 1984 45 301 310 10.1080/09553008414550441 

  17. 17. Ngo F.Q.H. Blakely E.A. Tobias C.A. Sequential exposures of mammalian cells to low- and high-LET radiation, I. Lethal effects following X-ray and neon-ion irradiation Radiat. Res. 1981 87 59 78 10.2307/3575541 7255673 

  18. 18. Murthy M.S.S. Madhvanath U. Subrahmanyam P. Rao B.S. Reddy N.M.S. Synergistic effect of simultaneous exposure to 60 Co gamma rays and 210 Po alpha rays in diploid yeast Radiat. Res. 1975 63 185 190 10.2307/3574318 1096226 

  19. 19. McNally N.J. Deronde J. Folkard M. Interaction between X-rays and alpha-particle damage in V-79 cells Int. J. Radiat. Biol. 1988 53 917 920 10.1080/09553008814551281 

  20. 20. Brooks A.L. Newton G.J. Shyr L.J. Seiler F.A. Scott B.R. The combined effects of alpha-particles and X-rays on cell killing and micronuclei induction in lung epithelial cells Int. J. Radiat. Biol. 1990 58 799 811 10.1080/09553009014552181 1977824 

  21. 21. Rithidech K.N. Scott B.R. Evidence for radiation hormesis after in vitro exposure of human lymphocytes to low doses of ionizing radiation Dose Response 2008 6 252 271 10.2203/dose-response.07-024.Rithidech 18846261 

  22. 22. Calabrese E.J. Hormetic mechanisms Crit. Rev. Toxicol. 2013 43 580 606 10.3109/10408444.2013.808172 23875765 

  23. 23. Calabrese E.J. Hormesis: Why it is important to toxicology and toxicologists Environ. Toxicol. Chem. 2008 27 1452 1474 10.1897/07-541.1 

  24. 24. Calabrese E.J. Linda A.B. Toxicology rethinks its central belief Nature 2003 421 691 692 10.1038/421691a 12610596 

  25. 25. Calabrese E.J. Baldwin L.A. Defining hormesis Hum. Exp. Toxicol. 2002 21 91 97 10.1191/0960327102ht217oa 12102503 

  26. 26. Calabrese E.J. The emergence of the dose–response concept in biology and medicine Int. J. Mol. Sci. 2016 17 2034 10.3390/ijms17122034 27929392 

  27. 27. Ng C.Y.P. Kong E.Y. Konishi T. Kobayashi A. Suya N. Cheng S.H. Yu K.N. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility Radiat. Phys. Chem. 2015 114 12 17 10.1016/j.radphyschem.2015.05.020 

  28. 28. Scott B.R. Low-dose-radiation stimulated natural chemical and biological protection against lung cancer Dose Response 2008 6 299 318 10.2203/dose-response.07-025.Scott 18846259 

  29. 29. Scott B.R. Sanders C.L. Mitchel R.E.J. Boreham D.R. CT scans may reduce rather than increase the risk of cancer J. Am. Phys. Surg. 2008 13 8 11 

  30. 30. Bauer G. Low dose radiation and intercellular induction of apoptosis: Potential implications for the control of oncogenesis Int. J. Radiat. Biol. 2007 83 873 888 10.1080/09553000701727523 18058371 

  31. 31. Portess D.I. Bauer G. Hill M.A. O’Neill P. Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis Cancer Res. 2007 67 1246 1253 10.1158/0008-5472.CAN-06-2985 17283161 

  32. 32. Scott B.R. Di Palma J. Sparsely ionizing diagnostic and natural background radiation are likely preventing cancer and other genomic-instability associated diseases Dose Response 2006 5 230 255 10.2203/dose-response.06-002.Scott 18648608 

  33. 33. Ng C.Y.P. Kong E.Y. Kobayashi A. Suya N. Uchihori Y. Cheng S.H. Konishi T. Yu K.N. Neutron induced bystander effect among zebrafish embryos Radiat. Phys. Chem. 2015 117 153 159 10.1016/j.radphyschem.2015.08.009 

  34. 34. Bladen C.L. Lam W.K. Dynan W.S. Kozlowski D.J. DNA damage response and Ku80 function in the vertebrate embryo Nucleic Acids Res. 2005 33 3002 3010 10.1093/nar/gki613 15914672 

  35. 35. Choi V.W.Y. Konishi T. Oikawa M. Cheng S.H. Yu K.N. Threshold number of protons for inducing adaptive response in zebrafish embryos J. Radiol. Prot. 2013 33 91 100 10.1088/0952-4746/33/1/91 23295938 

  36. 36. Choi V.W.Y. Ng C.Y.P. Kobayashi A. Konishi T. Suya N. Ishikawa T. Cheng S.H. Yu K.N. Bystander effect between zebrafish embryos in vivo induced by high-dose X-rays Environ. Sci. Technol. 2013 47 6368 6376 10.1021/es401171h 23668636 

  37. 37. Choi V.W.Y. Ng C.Y.P. Kong M.K.Y. Cheng S.H. Yu K.N. Adaptive response to ionizing radiation induced by cadmium in zebrafish embryos J. Radiol. Prot. 2013 33 101 112 10.1088/0952-4746/33/1/101 23296313 

  38. 38. Choi V.W.Y. Ng C.Y.P. Kobayashi A. Konishi T. Oikawa M. Cheng S.H. Yu P.K.N. Exogenous carbon monoxide suppresses adaptive response induced in zebrafish embryos in vivo by microbeam protons J. Radiat. Res. 2014 55 i115 10.1093/jrr/rrt165 

  39. 39. Choi V.W.Y. Yu K.N. Embryos of the zebrafish Danio rerio in studies of non-targeted effects of ionizing radiation Cancer Lett. 2015 356 91 104 10.1016/j.canlet.2013.10.020 24176822 

  40. 40. Daroczi B. Kari G. McAleer M.F. Wolf J.C. Rodeck U. Dicker A.P. In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model Clin. Cancer Res. 2006 12 7086 7091 10.1158/1078-0432.CCR-06-0514 17145832 

  41. 41. Geiger G.A. Parker S.E. Beothy A.P. Tucker J.A. Mullins M.C. Kao G.D. Zebrafish as a “Biosensor”? Effects of ionizing radiation and amifostine on embryonic viability and development Cancer Res. 2006 66 8172 8181 10.1158/0008-5472.CAN-06-0466 16912196 

  42. 42. Kong E.Y. Cheng S.H. Yu K.N. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kV X-rays with different hardness J. Radiat. Res. 2016 57 363 369 10.1093/jrr/rrw026 26951078 

  43. 43. Kong E.Y. Yeung W.K. Chan T.K.Y. Cheng S.H. Yu K.N. Exogenous nitric oxide suppresses in vivo X-ray-induced targeted and non-targeted effects in zebrafish embryos Int. J. Mol. Sci. 2016 17 1321 10.3390/ijms17081321 27529238 

  44. 44. McAleer M.F. Davidson C. Davidson W.R. Yentzer B.Y. Farber S.A. Rodeck U. Dicker A.P. Novel use of zebrafish as a vertebrate model to screen radiation protectors and sensitizers Int. J. Radiat. Oncol. Biol. Phys. 2005 61 10 13 10.1016/j.ijrobp.2004.09.046 15629588 

  45. 45. Ng C.Y.P. Pereira S. Cheng S.H. Adam-Guillermin C. Garnier-Laplace J. Yu K.N. Combined effects of depleted uranium and ionising radiation on zebrafish embryos Radiat. Prot. Dosim. 2015 167 311 315 10.1093/rpd/ncv269 25948823 

  46. 46. Ng C.Y.P. Cheng S.H. Yu K.N. Hormetic effect induced by depleted uranium in zebrafish embryos Aquat. Toxicol. 2016 175 184 191 10.1016/j.aquatox.2016.03.020 27060238 

  47. 47. Ng C.Y.P. Kong E.Y. Kobayashi A. Suya N. Uchihori Y. Cheng S.H. Konishi T. Yu K.N. Non-induction of radioadaptive response in zebrafish embryos by neutrons J. Radiat. Res. 2016 57 210 219 10.1093/jrr/rrv089 26850927 

  48. 48. Ng C.Y.P. Pereira S. Cheng S.H. Adam-Guillermin C. Garnier-Laplace J. Yu K.N. Combined effects of alpha particles and depleted uranium on zebrafish ( Danio rerio ) embryos J. Radiat. Res. 2016 57 343 355 10.1093/jrr/rrv104 26937024 

  49. 49. Yum E.H.W. Ng C.K.M. Lin A.C.C. Cheng S.H. Yu K.N. Effects of alpha particles on zebrafish embryos Appl. Radiat. Isot. 2010 68 714 717 10.1016/j.apradiso.2009.09.035 19837598 

  50. 50. Kong E.Y. Cheng S.H. Yu K.N. Zebrafish as an in vivo model to assess epigenetic effects of ionizing radiation Int. J. Mol. Sci. 2016 17 2108 10.3390/ijms17122108 27983682 

  51. 51. Barbazuk W.B. Korf I. Kadavi C. Heyen J. Tate S. Wun E. Bedell J.A. McPherson J.D. Johnson S.L. The syntenic relationship of the zebrafish and human genomes Genome Res. 2000 10 1351 1358 10.1101/gr.144700 10984453 

  52. 52. Karlsson J. von Hofsten J. Olsson P.E. Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development Mar. Biotechnol. 2001 10 522 527 10.1007/s1012601-0053-4 14961324 

  53. 53. Fox J.C. McNally N.J. Cell survival and DNA double-strand break repair following X-ray or neutron irradiation of V79 cells Int. J. Radiat. Biol. 1988 54 1021 1030 10.1080/09553008814552401 2903883 

  54. 54. Ngo F.Q.H. Han A. Elkind M.M. On the repair of sub-lethal damage in V79 Chinese hamster cells resulting from irradiation with fast neutrons or fast neutrons combined with X-rays Int. J. Radiat. Biol. 1977 32 507 511 10.1080/09553007714551291 

  55. 55. Ng C.Y.P. Cheng S.H. Yu K.N. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos Radiat. Phys. Chem. 2017 133 72 80 10.1016/j.radphyschem.2016.12.025 

  56. 56. Yum E.H.W. Ng C.K.M. Lin A.C.C. Cheng S.H. Yu K.N. Experimental setup for studying the effects of alpha particles on zebrafish embryos Nucl. Instrum. Methods B 2007 264 171 176 10.1016/j.nimb.2007.07.024 

  57. 57. Kimmel C.B. Ballard W.W. Kimmel S.R. Ullmann B. Sshilling T.F. Stages of Embryonic Development of the Zebrafish Dev. Dyn. 1995 203 253 310 10.1002/aja.1002030302 8589427 

  58. 58. Milos N. Dingle A.D. Dynamics of pigment pattern formation in the zebrafish, BrachyDanio rerio . I. Establishment and regulation of the lateral line melanophore stripe during the first eight days of development J. Exp. Zool. A 1978 205 205 216 10.1002/jez.1402050205 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로