$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Seismic fault detection with convolutional neural network

Geophysics, v.83 no.5, 2018년, pp.O97 - O103  

Xiong, Wei (Aramco Asia, Aramco Beijing Research Center, Beijing, China..) ,  Ji, Xu (Saudi Aramco, EXPEC Advanced Research Center, Dhahran, Saudi Arabia..) ,  Ma, Yue (Aramco Asia, Aramco Beijing Research Center, Beijing, China..) ,  Wang, Yuxiang (Aramco Asia, Aramco Beijing Research Center, Beijing, China..) ,  AlBinHassan, Nasher M. (Saudi Aramco, EXPEC Advanced Research Center, Dhahran, Saudi Arabia..) ,  Ali, Mustafa N. (Saudi Aramco, EXPEC Advanced Research Center, Dhahran, Saudi Arabia..) ,  Luo, Yi (Saudi Aramco, EXPEC Advanced Research Center, Dhahran, Saudi Arabia..)

Abstract AI-Helper 아이콘AI-Helper

Mapping fault planes using seismic images is a crucial and time-consuming step in hydrocarbon prospecting. Conventionally, this requires significant manual efforts that normally go through several iterations to optimize how the different fault planes connect with each other. Many techniques have be...

참고문헌 (35)

  1. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, and M. Devin, 2016, Tensorflow: Large-scale machine learning on heterogeneous distributed systems: preprint arXiv:1603.04467. 

  2. Abdel-Hamid, Ossama, Mohamed, Abdel-rahman, Hui Jiang, Li Deng, Penn, Gerald, Dong Yu. Convolutional Neural Networks for Speech Recognition. IEEE/ACM transactions on audio, speech, and language processing, vol.22, no.10, 1533-1545.

  3. Admasu, Fitsum, Back, Stefan, Toennies, Klaus. Autotracking of faults on 3D seismic data. Geophysics, vol.71, no.6, A49-A53.

  4. Araya-Polo, Mauricio, Dahlke, Taylor, Frogner, Charlie, Zhang, Chiyuan, Poggio, Tomaso, Hohl, Detlef. Automated fault detection without seismic processing. The leading edge, vol.36, no.3, 208-214.

  5. 10.1190/1.3628241 

  6. Bahorich, Mike, Farmer, Steve. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. The leading edge, vol.14, no.10, 1053-1058.

  7. Pattern recognition and machine learning Bishop C. M. 2006 

  8. Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, and J. Zhang, 2016, End to end learning for self-driving cars: preprint arXiv:1604.07316. 

  9. Chehrazi, A., Rahimpour-Bonab, H., Rezaee, M. R.. Seismic data conditioning and neural network-based attribute selection for enhanced fault detection. Petroleum geoscience, vol.19, no.2, 169-183.

  10. Moore, G. F., Boston, B. B., Sacks, A. F., Saffer, D. M.. Analysis of normal fault populations in the Kumano Forearc Basin, Nankai Trough, Japan: 1. Multiple orientations and generations of faults from 3‐D coherency mapping. Geochemistry, geophysics, geosystems : G³, vol.14, no.6, 1989-2002.

  11. Dorn, Geoffrey A.. Modern 3-D seismic interpretation. The leading edge, vol.17, no.9, 1262-1262.

  12. 10.1080/00401706.1995.10484383 

  13. Google, 2017, Tensor flow tutorials: Convolutional neural networks, https://www.tensorflow.org/tutorials/deep_cnn, accessed 22 August 2017. 

  14. 10.1190/segam2012-0734.1 

  15. GEO ExPro Henderson J. 13 2016 

  16. Huang, Lei, Dong, Xishuang, Clee, T. Edward. A scalable deep learning platform for identifying geologic features from seismic attributes. The leading edge, vol.36, no.3, 249-256.

  17. Jia, Yongna, Ma, Jianwei. What can machine learning do for seismic data processing? An interpolation application. Geophysics, vol.82, no.3, V163-V177.

  18. Krizhevsky, A., and G. Hinton, 2009, Learning multiple layers of features from tiny images: M.S. thesis, University of Toronto. 

  19. Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012, Image net classification with deep convolutional neural networks: Proceedings of the 25th International Conference on Neural Information Processing Systems, 1097-1105. 

  20. Lawrence, S., Giles, C.L., Ah Chung Tsoi, Back, A.D.. Face recognition: a convolutional neural-network approach. IEEE transactions on neural networks, vol.8, no.1, 98-113.

  21. The handbook of brain theory and neural networks LeCun Y. 1998 

  22. LeCun, Yann, Bengio, Yoshua, Hinton, Geoffrey. Deep learning. Nature, vol.521, no.7553, 436-444.

  23. 10.1109/ISCAS.2010.5537907 LeCun, Y., K. Kavukcuoglu, and C. Farabet, 2010, Convolutional networks and applications in vision: Proceedings of the IEEE International Symposium on Circuits and Systems, 253-256. 

  24. 10.1190/1.1826632 

  25. Meldahl, Paul, Heggland, Roar, Bril, Bert, de Groot, Paul. Identifying faults and gas chimneys using multiattributes and neural networks. The leading edge, vol.20, no.5, 474-482.

  26. Neff, D. B., J. R. Grismore, and W. A. Lucas, 2000, Automated seismic fault detection and picking: U.S. Patent 6018498A. 

  27. Sinno Jialin Pan, Qiang Yang. A Survey on Transfer Learning. IEEE transactions on knowledge and data engineering, vol.22, no.10, 1345-1359.

  28. Qi, Jie, Machado, Gabriel, Marfurt, Kurt. A workflow to skeletonize faults and stratigraphic features. Geophysics, vol.82, no.4, O57-O70.

  29. 10.1109/ICMLA.2011.91 Ramirez, J., Jr., and F. G. Meyer, 2011, Machine learning for seismic signal processing: Phase classification on a manifold: Proceedings of the 10th International Conference on Machine Learning and Applications, 382-388. 

  30. Schlumberger, 2017, Geoframe seismic attribute toolkit bundle, https://www.software.slb.com/products/geoframe/gf-geophysics/seismic-attribute-toolkit, accessed 22 August 2017. 

  31. Schmidhuber, J.. Deep learning in neural networks: An overview. Neural networks : the official journal of the International Neural Network Society, vol.61, 85-117.

  32. Wu, Xinming. Directional structure-tensor-based coherence to detect seismic faults and channels. Geophysics, vol.82, no.2, A 13-A 17.

  33. Wu, Xinming, Hale, Dave. Automatically interpreting all faults, unconformities, and horizons from 3D seismic images. Interpretation, vol.4, no.2, T227-T237.

  34. Yosinski, J., J. Clune, Y. Bengio, and H. Lipson, 2014, How transferable are features in deep neural networks? Proceedings of the 27th International Conference on Neural Information Processing Systems, 3320-3328. 

  35. 10.3997/2214-4609.20141500 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로