$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A high-performance supercapacitor based on N-doped TiO2 nanoparticles

Journal of materials science. Materials in electronics, v.29 no.17, 2018년, pp.14596 - 14604  

Hodaei, Amin ,  Dezfuli, Amin Shiralizadeh ,  Naderi, Hamid Reza

초록이 없습니다.

참고문헌 (35)

  1. Adv. Mater. T-Y Wei 22 3 347 2010 10.1002/adma.200902175 T.-Y. Wei, C.-H. Chen, H.-C. Chien, S.-Y. Lu, C.-C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 22(3), 347-351 (2010) 

  2. Energy Environ. Sci. Z Yu 8 3 702 2015 10.1039/C4EE03229B Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702-730 (2015) 

  3. Carbon E Frackowiak 39 6 937 2001 10.1016/S0008-6223(00)00183-4 E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937-950 (2001) 

  4. Angew. Chem. Int. Ed. Q Lu 52 7 1882 2013 10.1002/anie.201203201 Q. Lu, J.G. Chen, J.Q. Xiao, Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem. Int. Ed. 52(7), 1882-1889 (2013) 

  5. Thin Solid Films M Sobaszek 601 Supplement C 3540 2016 M. Sobaszek, K. Siuzdak, M. Sawczak, J. Ryl, R. Bogdanowicz, Fabrication and characterization of composite TiO2 nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors. Thin Solid Films, 601(Supplement C), 35-40 (2016) 

  6. Electrochim. Acta N Nagarajan 51 15 3039 2006 10.1016/j.electacta.2005.08.042 N. Nagarajan, H. Humadi, I. Zhitomirsky, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochim. Acta 51(15), 3039-3045 (2006) 

  7. J. Electrochem. Soc. S-Y Wang 153 1 A75 2006 10.1149/1.2131820 S.-Y. Wang, K.-C. Ho, S.-L. Kuo, N.-L. Wu, Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors. J. Electrochem. Soc. 153(1), A75-A80 (2006) 

  8. Electrochem. Commun. C Lokhande 9 7 1805 2007 10.1016/j.elecom.2007.04.011 C. Lokhande, T. Gujar, V. Shinde, R.S. Mane, S.-H. Han, Electrochemical supercapacitor application of pervoskite thin films. Electrochem. Commun. 9(7), 1805-1809 (2007) 

  9. Colloids Surf. A R Wang 457 94 2014 10.1016/j.colsurfa.2014.05.059 R. Wang, Q. Li, L. Cheng, H. Li, B. Wang, X. Zhao, P. Guo, Electrochemical properties of manganese ferrite-based supercapacitors in aqueous electrolyte: the effect of ionic radius. Colloids Surf. A 457, 94-99 (2014) 

  10. RSC Adv. AS Dezfuli 5 57 46050 2015 10.1039/C5RA02957K A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, A high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. RSC Adv. 5(57), 46050-46058 (2015) 

  11. Appl. Surf. Sci. AS Dezfuli 402 245 2017 10.1016/j.apsusc.2017.01.021 A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor. Appl. Surf. Sci. 402, 245-253 (2017) 

  12. J. Mater. Sci.: Mater. Electron. HR Naderi 29 4 30353044 2017 H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. J. Mater. Sci.: Mater. Electron. 29(4), 3035-3044 (2017) 

  13. RSC Adv. HR Naderi 6 56 51211 2016 10.1039/C6RA02943D H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, P. Norouzi, Sonochemical preparation of a ytterbium oxide/reduced graphene oxide nanocomposite for supercapacitors with enhanced capacitive performance. RSC Adv. 6(56), 51211-51220 (2016) 

  14. Adv. Mater. J Jiang 24 38 5166 2012 10.1002/adma.201202146 J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166-5180 (2012) 

  15. Adv. Mater. X Lu 25 2 267 2013 10.1002/adma.201203410 X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, H-TiO2@ MnO2//H-TiO2@ C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25(2), 267-272 (2013) 

  16. Adv. Mater. L-F Chen 25 34 4746 2013 10.1002/adma.201204949 L.-F. Chen, Z.-H. Huang, H.-W. Liang, Q.-F. Guan, S.-H. Yu, Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv. Mater. 25(34), 4746-4752 (2013) 

  17. J. Mater. Chem. A DA Agyeman 3 45 22557 2015 10.1039/C5TA05426E D.A. Agyeman, K. Song, S.H. Kang, M.R. Jo, E. Cho, Y.-M. Kang, An improved catalytic effect of nitrogen-doped TiO2 nanofibers for rechargeable Li-O2 batteries; the role of oxidation states and vacancies on the surface. J. Mater. Chem. A 3(45), 22557-22563 (2015) 

  18. ACS Appl. Mater. Interfaces. S Yang 7 32 17884 2015 10.1021/acsami.5b04368 S. Yang, Y. Lin, X. Song, P. Zhang, L. Gao, Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor. ACS Appl. Mater. Interfaces. 7(32), 17884-17892 (2015) 

  19. Nano Lett. X Lu 12 3 1690 2012 10.1021/nl300173j X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12(3), 1690-1696 (2012) 

  20. Environ. Sci. Pollut. Res. F Veisi 23 21 21846 2016 10.1007/s11356-016-7199-7 F. Veisi, M.A. Zazouli, M.A. Ebrahimzadeh, J.Y. Charati, A.S. Dezfoli, Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles. Environ. Sci. Pollut. Res. 23(21), 21846-21860 (2016) 

  21. Langmuir B Erdem 17 9 2664 2001 10.1021/la0015213 B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17(9), 2664-2669 (2001) 

  22. Curr. Appl. Phys. NR Khalid 12 6 1485 2012 10.1016/j.cap.2012.04.019 N.R. Khalid, E. Ahmed, Z. Hong, Y. Zhang, M. Ahmad, Nitrogen doped TiO2 nanoparticles decorated on graphene sheets for photocatalysis applications. Curr. Appl. Phys. 12(6), 1485-1492 (2012) 

  23. J. Phys. Chem. B M Mrowetz 108 45 17269 2004 10.1021/jp0467090 M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann, Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J. Phys. Chem. B 108(45), 17269-17273 (2004) 

  24. J. Hazard. Mater. J Ananpattarachai 168 1 253 2009 10.1016/j.jhazmat.2009.02.036 J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J. Hazard. Mater. 168(1), 253-261 (2009) 

  25. J. Phys. Chem. C J Wang 111 2 1010 2007 10.1021/jp066156o J. Wang, W. Zhu, Y. Zhang, S. Liu, An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: visible-light-induced photodecomposition of methylene blue. J. Phys. Chem. C 111(2), 1010-1014 (2007) 

  26. Int. J. Photoenergy Y Sheng 2008 7 2008 10.1155/2008/563949 Y. Sheng, Y. Xu, D. Jiang, L. Liang, D. Wu, Y. Sun, Hydrothermal preparation of visible-light-driven N-Br-codoped photocatalysts. Int. J. Photoenergy 2008, 7 (2008) 

  27. Int. J. Hydrog Energy F Pei 38 6 2670 2013 10.1016/j.ijhydene.2012.12.045 F. Pei, Y. Liu, S. Xu, J. Lü, C. Wang, S. Cao, Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution. Int. J. Hydrog Energy 38(6), 2670-2677 (2013) 

  28. Chem. Phys. Lett. X Tang 691 408 2018 10.1016/j.cplett.2017.11.037 X. Tang, Z. Wang, Y. Wang, Visible active N-doped TiO2/reduced graphene oxide for the degradation of tetracycline hydrochloride. Chem. Phys. Lett. 691, 408-414 (2018) 

  29. Small Y Wu 12 26 3522 2016 10.1002/smll.201600606 Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12(26), 3522-3529 (2016) 

  30. Mater. Des. X He 106 74 2016 10.1016/j.matdes.2016.05.025 X. He, C. Yang, G. Zhang, D. Shi, Q. Huang, H. Xiao, Y. Liu, R. Xiong, Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment. Mater. Des. 106, 74-80 (2016) 

  31. Adv. Energy Mater. H Kim 3 11 1500 2013 10.1002/aenm.201300467 H. Kim, M.Y. Cho, M.H. Kim, K.Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3(11), 1500-1506 (2013) 

  32. Int. J. Electrochem. Sci. D Wang 11 12 9776 2016 10.20964/2016.12.15 D. Wang, K. Xie, Y. Wang, S. Cheng, A non-aqueous hybrid supercapacitor with porous anatase TiO2 nanoparticles anode and activated carbon cathode. Int. J. Electrochem. Sci. 11(12), 9776-9782 (2016) 

  33. Carbon VH Pham 126 135 2018 10.1016/j.carbon.2017.10.026 V.H. Pham, T.-D. Nguyen-Phan, X. Tong, B. Rajagopalan, J.S. Chung, J.H. Dickerson, Hydrogenated TiO2@ reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon 126, 135-144 (2018) 

  34. Carbon A Ramadoss 63 434 2013 10.1016/j.carbon.2013.07.006 A. Ramadoss, S.J. Kim, Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63, 434-445 (2013) 

  35. Nanotechnology L Aravinda 27 31 314001 2016 10.1088/0957-4484/27/31/314001 L. Aravinda, K. Nagaraja, H. Nagaraja, K.U. Bhat, B.R. Bhat, Fabrication and performance evaluation of hybrid supercapacitor electrodes based on carbon nanotubes and sputtered TiO2. Nanotechnology 27(31), 314001 (2016) 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로