$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A hybrid micromixer with planar mixing units 원문보기

RSC advances, v.8 no.58, 2018년, pp.33103 - 33120  

Bazaz, Sajad Razavi (School of Biomedical Engineering, University of Technology Sydney New South Wales 2007 Australia majid.Warkiani@uts.edu.au) ,  Mehrizi, Ali Abouei (Biomedical Engineering Division, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran Tehran Iran abouei@ut.ac.ir) ,  Ghorbani, Sadegh (Department of Anatomical Sciences, Faculty of Medicine, Tarbiat Modares University Tehran Iran) ,  Vasilescu, Steven (Faculty of Science, University of Technology Sydney New South Wales 2007 Australia) ,  Asadnia, Mohsen (Department of Engineering, Faculty of Science and Engineering, Macquarie University Sydney NSW 2109 Australia) ,  Warkiani, Majid Ebrahimi (School of Biomedical Engineering, University of Technology Sydney New South Wales 2007 Australia majid.Warkiani@uts.edu.au)

Abstract AI-Helper 아이콘AI-Helper

The application of microfluidic systems in chemical and biological assays has progressed dramatically in recent years. One of the fundamental operations that microfluidic devices must achieve is a high mixing index. Of particular importance is the role of planar mixing units with repetitive obstacle...

참고문헌 (45)

  1. Lashkaripour A. Silva R. Densmore D. Desktop micromilled microfluidics Microfluid. Nanofluid. 2018 22 3 31 10.1007/s10404-018-2048-2 

  2. Gomez F. A. , Biological applications of microfluidics , John Wiley & Sons , 2008 

  3. Nguyen N.-T. Wu Z. Micromixers—a review J. Micromech. Microeng. 2004 15 2 R1 10.1088/0960-1317/15/2/R01 

  4. Lee C.-Y. Fu L.-M. Recent advances and applications of micromixers J. Micromech. Microeng. 2018 259 677 702 

  5. Kim D. et al. , An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions Analyst 2005 130 3 293 298 10.1039/B414180F 15724156 

  6. Kim H. et al. , Submillisecond organic synthesis: outpacing fries rearrangement through microfluidic rapid mixing Science 2016 352 6286 691 694 10.1126/science.aaf1389 27151864 

  7. Ko Y.-J. et al. , DNA ligation using a disposable microfluidic device combined with a micromixer and microchannel reactor J. Micromech. Microeng. 2011 157 2 735 741 

  8. Goerge T. et al. , Microfluidic reveals generation of platelet-strings on tumoractivated endothelium Thromb. Haemostasis 2007 98 02 283 286 17721608 

  9. Nason F. et al. , Design of microfluidic devices for drug screening on in vitro cells for osteoporosis therapies Microelectron. Eng. 2011 88 8 1801 1806 10.1016/j.mee.2011.02.115 

  10. Chen X. Li T. A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel Chem. Eng. J. 2017 313 1406 1414 10.1016/j.cej.2016.11.052 

  11. Yu S. Jeon T.-J. Kim S. M. Active micromixer using electrokinetic effects in the micro/nanochannel junction Chem. Eng. J. 2012 197 289 294 10.1016/j.cej.2012.05.044 

  12. Lee C.-Y. et al. , Passive mixers in microfluidic systems: a review Chem. Eng. J. 2016 288 146 160 10.1016/j.cej.2015.10.122 

  13. Zhang J. et al. , Fundamentals and applications of inertial microfluidics: a review Lab Chip 2016 16 1 10 34 10.1039/C5LC01159K 26584257 

  14. Mollajan M. Bazaz S. R. Mehrizi A. A. A Thoroughgoing Design of a Rapid-cycle Microfluidic Droplet-based PCR Device to Amplify Rare DNA Strands J. Appl. Fluid Mech. 2018 11 1 21 29 

  15. Rafeie M. et al. , An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates Biomicrofluidics 2017 11 1 014108 10.1063/1.4974904 28798843 

  16. Park S.-J. et al. , Rapid three-dimensional passive rotation micromixer using the breakup process J. Micromech. Microeng. 2003 14 1 6 10.1088/0960-1317/14/1/302 

  17. Tran-Minh N. Dong T. Karlsen F. An efficient passive planar micromixer with ellipse-like micropillars for continuous mixing of human blood Comput. Methods Programs Biomed. 2014 117 1 20 29 10.1016/j.cmpb.2014.05.007 24962646 

  18. Hong C.-C. Choi J.-W. Ahn C. H. A novel in-plane passive microfluidic mixer with modified Tesla structures Lab Chip 2004 4 2 109 113 10.1039/B305892A 15052349 

  19. Chen X. and Shen J. , Numerical and experimental investigation on splitting-and-recombination micromixer with E-shape mixing units . Microsystem Technologies , 2016 : pp. 1–7 

  20. Chen X. Shen J. Simulation and experimental analysis of a SAR micromixer with F-shape mixing units Anal. Methods 2017 9 12 1885 1890 10.1039/C7AY00022G 

  21. Lin Y.-C. Chung Y.-C. Wu C.-Y. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel Biomed. Microdevices 2007 9 2 215 221 10.1007/s10544-006-9023-5 17165126 

  22. Chung C.-K. Shih T. Effect of geometry on fluid mixing of the rhombic micromixers Microfluid. Nanofluid. 2008 4 5 419 425 10.1007/s10404-007-0197-9 

  23. Chung C.-K. Shih T. A rhombic micromixer with asymmetrical flow for enhancing mixing J. Micromech. Microeng. 2007 17 12 2495 10.1088/0960-1317/17/12/016 

  24. Chung C. Chang C. Lai C. Simulation and fabrication of a branch-channel rhombic micromixer for low pressure drop and short mixing length Microsyst. Technol. 2014 20 10–11 1981 1986 10.1007/s00542-013-2040-4 

  25. Hossain S. Kim K.-Y. Mixing analysis of passive micromixer with unbalanced three-split rhombic sub-channels Micromachines 2014 5 4 913 928 10.3390/mi5040913 

  26. Nejat A. et al. , Unsteady pulsating characteristics of the fluid flow through a sudden expansion microvalve Microfluid. Nanofluid. 2014 17 4 623 637 10.1007/s10404-014-1343-9 

  27. Alam A. Afzal A. Kim K.-Y. Mixing performance of a planar micromixer with circular obstructions in a curved microchannel Chem. Eng. Res. Des. 2014 92 3 423 434 10.1016/j.cherd.2013.09.008 

  28. Jang L.-S. , et al. , Transport of particle-laden fluids through fixed-valve micropumps , Microelectromechanical Systems , ASME MEMS , 1999 , vol. 1 , p. 503–509 

  29. Duffy D. C. et al. , Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow J. Micromech. Microeng. 1999 9 3 211 10.1088/0960-1317/9/3/301 

  30. Bhagat A. A. S. Papautsky I. Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles J. Micromech. Microeng. 2008 18 8 085005 10.1088/0960-1317/18/8/085005 

  31. Hossain S. et al. , Analysis and optimization of a micromixer with a modified Tesla structure Chem. Eng. J. 2010 158 2 305 314 10.1016/j.cej.2010.02.002 

  32. Cook K. J. Fan Y. Hassan I. Experimental investigation of a scaled-up passive micromixer with uneven interdigital inlet and teardrop obstruction elements Exp. Fluids 2012 52 5 1261 1275 10.1007/s00348-011-1246-4 

  33. Islami S. B. Khezerloo M. Enhancement of Mixing Performance of Non-Newtonian Fluids using Curving and Grooving of Microchannels J. Appl. Fluid Mech. 2017 10 1 127 141 10.18869/acadpub.jafm.73.238.26374 

  34. Solehati N. Bae J. Sasmito A. P. Optimization of Wavy-Channel Micromixer Geometry Using Taguchi Method Micromachines 2018 9 2 70 10.3390/mi9020070 

  35. Wang H. et al. , Optimizing layout of obstacles for enhanced mixing in microchannels Smart Mater. Struct. 2002 11 5 662 10.1088/0964-1726/11/5/306 

  36. Feng X. Ren Y. Jiang H. An effective splitting-and-recombination micromixer with self-rotated contact surface for wide Reynolds number range applications Biomicrofluidics 2013 7 5 054121 10.1063/1.4827598 24396530 

  37. Xia H. et al. , Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers Lab Chip 2005 5 7 748 755 10.1039/B502031J 15970968 

  38. Ansari M. A. Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel Chem. Eng. J. 2009 146 3 439 448 10.1016/j.cej.2008.10.006 

  39. Veldurthi N. et al. , Computational fluid dynamic analysis of poly (dimethyl siloxane) magnetic actuator based micromixer J. Micromech. Microeng. 2015 212 419 424 

  40. Nagaki A. et al. , Polymerization of vinyl ethers initiated by dendritic cations using flow microreactors Tetrahedron 2015 71 35 5973 5978 10.1016/j.tet.2015.05.096 

  41. Anwar K. et al. , Integrated micro/nano-fluidic system for mixing and preconcentration of dissolved proteins Microchim. Acta 2011 173 3–4 331 335 10.1007/s00604-011-0567-6 

  42. Kuo J.-N. Liao H.-S. Li X.-M. Design optimization of capillary-driven micromixer with square-wave microchannel for blood plasma mixing Microsyst. Technol. 2017 23 3 721 730 10.1007/s00542-015-2722-1 

  43. Li P. Cogswell J. Faghri M. Design and test of a passive planar labyrinth micromixer for rapid fluid mixing J. Micromech. Microeng. 2012 174 126 132 

  44. Bhagat A. A. S. Peterson E. T. Papautsky I. A passive planar micromixer with obstructions for mixing at low Reynolds numbers J. Micromech. Microeng. 2007 17 5 1017 10.1088/0960-1317/17/5/023 

  45. Conlisk K. O'Connor G. M. Analysis of passive microfluidic mixers incorporating 2D and 3D baffle geometries fabricated using an excimer laser Microfluid. Nanofluid. 2012 12 6 941 951 10.1007/s10404-011-0928-9 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로