$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Channel Characterization and Path Loss Modeling in Indoor Environment at 4.5, 28, and 38 GHz for 5G Cellular Networks 원문보기

International journal of antennas and propagation, v.2018, 2018년, pp.1 - 14  

Majed, Mohammed Bahjat (Wireless Communication Center (WCC), Faculty of Electrical Eng, Universiti Teknologi Malaysia (UTM), Johor, Malaysia) ,  Rahman, Tharek Abd (Wireless Communication Center (WCC), Faculty of Electrical Eng, Universiti Teknologi Malaysia (UTM), Johor, Malaysia) ,  Aziz, Omar Abdul (Wireless Communication Center (WCC), Faculty of Electrical Eng, Universiti Teknologi Malaysia (UTM), Johor, Malaysia) ,  Hindia, Mohammad Nour (Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia) ,  Hanafi, Effariza (Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia)

Abstract AI-Helper 아이콘AI-Helper

The current propagation models used for frequency bands less than 6 GHz are not appropriate and cannot be applied for path loss modeling and channel characteristics for frequency bands above 6 GHz millimeter wave (mmWave) bands, due to the difference of signal propagation characteristics between exi...

참고문헌 (28)

  1. Laster, J.D., Reed, J.H.. Interference rejection in digital wireless communications. IEEE signal processing magazine, vol.14, no.3, 37-62.

  2. Yoon Hyun-Goo, Chung Woo-Ghee, Jo Han-Shin, Lim Jae-Woo, Yook Jong-Gwan, Park Han-Kyu. Spectrum Requirements for the Future Development of IMT-2000 and Systems Beyond IMT-2000. Journal of communications and networks, vol.8, no.2, 169-174.

  3. Pi, Zhouyue, Khan, Farooq. An introduction to millimeter-wave mobile broadband systems. IEEE communications magazine, vol.49, no.6, 101-107.

  4. Rappaport, Theodore S., Sun, Shu, Mayzus, Rimma, Zhao, Hang, Azar, Yaniv, Wang, Kevin, Wong, George N., Schulz, Jocelyn K., Samimi, Mathew, Gutierrez, Felix. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!. IEEE access : practical research, open solutions, vol.1, 335-349.

  5. 2015 

  6. Na, C., Chen, J.K., Rappaport, T.S.. Measured Traffic Statistics and Throughput of IEEE 802.11b Public WLAN Hotspots with Three Different Applications. IEEE transactions on wireless communications, vol.5, no.11, 3296-3305.

  7. Sergiou, Charalambos, Antoniou, Pavlos, Vassiliou, Vasos. A Comprehensive Survey of Congestion Control Protocols in Wireless Sensor Networks. IEEE Communications surveys and tutorials, vol.16, no.4, 1839-1859.

  8. 10.1155/2013/156831 

  9. Ur-Rehman, Masood, Abbasi, Qammer Hussain, Rahman, Atiqur, Khan, Imdad, Chattha, Hassan Tariq, Matin, Mohammad Abdul. Millimetre-Wave Antennas and Systems for the Future 5G. International journal of antennas and propagation, vol.2017, 1-2.

  10. Xu, Hao, Kukshya, V., Rappaport, T.S.. Spatial and temporal characteristics of 60-GHz indoor channels. IEEE journal on selected areas in communications : a publication of the IEEE Communications Society, vol.20, no.3, 620-630.

  11. Maltsev, A., Maslennikov, R., Sevastyanov, A., Khoryaev, A., Lomayev, A.. Experimental investigations of 60 GHz WLAN systems in office environment. IEEE journal on selected areas in communications : a publication of the IEEE Communications Society, vol.27, no.8, 1488-1499.

  12. Rappaport, Theodore S., Murdock, James N., Gutierrez, Felix. State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications. Proceedings of the IEEE, vol.99, no.8, 1390-1436.

  13. Daniels, R C, Murdock, J N, Rappaport, T S, Heath, Robert W. 60 GHz Wireless: Up Close and Personal. IEEE microwave magazine, vol.11, no.7, 44-50.

  14. Akdeniz, Mustafa Riza, Liu, Yuanpeng, Samimi, Mathew K., Sun, Shu, Rangan, Sundeep, Rappaport, Theodore S., Erkip, Elza. Millimeter Wave Channel Modeling and Cellular Capacity Evaluation. IEEE journal on selected areas in communications : a publication of the IEEE Communications Society, vol.32, no.6, 1164-1179.

  15. Zhou, Xin, Zhong, Zhangdui, Zhang, Bei, He, Ruisi, Guan, Ke, Wang, Qi, Matolak, David. Experimental Characterization and Correlation Analysis of Indoor Channels at 15 GHz. International journal of antennas and propagation, vol.2015, 1-11.

  16. Alexander, S.E.. Characterising buildings for propagation at 900 MHz. Electronics letters, vol.19, no.20, 860-.

  17. Saleh, A.A.M., Valenzuela, R.. A Statistical Model for Indoor Multipath Propagation. IEEE journal on selected areas in communications : a publication of the IEEE Communications Society, vol.5, no.2, 128-137.

  18. Peter Ho, C. M., Rappaport, Theodore S., Koushik, M. Prabhakar. Antenna effects on indoor obstructed wireless channels and a deterministic image-based wide-band propagation model for in-building personal communication systems. International journal of wireless information networks, vol.1, no.1, 61-76.

  19. Andersen, J.B., Rappaport, T.S., Yoshida, S.. Propagation measurements and models for wireless communications channels. IEEE communications magazine, vol.33, no.1, 42-49.

  20. Ghassemzadeh, S.S., Jana, R., Rice, C.W., Turin, W., Tarokh, V.. Measurement and modeling of an ultra-wide bandwidth indoor channel. IEEE transactions on communications, vol.52, no.10, 1786-1796.

  21. Rappaport, T.S., Sandhu, S.. Radio-wave propagation for emerging wireless personal-communication systems. IEEE antennas and propagation magazine, vol.36, no.5, 14-24.

  22. Hindia, M.N., Al-Samman, A.M., Rahman, T.A., Yazdani, T.M.. Outdoor large-scale path loss characterization in an urban environment at 26, 28, 36, and 38 GHz. Physical communication, vol.27, 150-160.

  23. Maccartney, George R., Rappaport, Theodore S., Shu Sun, Sijia Deng. Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks. IEEE access : practical research, open solutions, vol.3, 2388-2424.

  24. Cassioli, D., Win, M.Z., Molisch, A.F.. The ultra-wide bandwidth indoor channel: from statistical model to simulations. IEEE journal on selected areas in communications : a publication of the IEEE Communications Society, vol.20, no.6, 1247-1257.

  25. Hindia, M. N., Rahman, T. A., Ojukwu, H., Hanafi, E. B., Fattouh, A.. Enabling Remote Health-Caring Utilizing IoT Concept over LTE-Femtocell Networks. PloS one, vol.11, no.5, e0155077-.

  26. Rappaport, Theodore S., MacCartney, George R., Samimi, Mathew K., Shu Sun. Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE transactions on communications, vol.63, no.9, 3029-3056.

  27. Al-Samman, A. M., Rahman, T. A., Azmi, M. H., Hindia, M. N., Khan, I., Hanafi, E.. Statistical Modelling and Characterization of Experimental mm-Wave Indoor Channels for Future 5G Wireless Communication Networks. PloS one, vol.11, no.9, e0163034-.

  28. Shu Sun, Rappaport, Theodore S., Thomas, Timothy A., Ghosh, Amitava, Nguyen, Huan C., Kovacs, Istvan Z., Rodriguez, Ignacio, Koymen, Ozge, Partyka, Andrzej. Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications. IEEE transactions on vehicular technology, vol.65, no.5, 2843-2860.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로